Regenerative process

Regenerative processes have been used to model problems in inventory control. The inventory in a warehouse such as this one decreases via a stochastic process due to sales until it gets replenished by a new order.[1]

In applied probability, a regenerative process is a class of stochastic process with the property that certain portions of the process can be treated as being statistically independent of each other.[2] This property can be used in the derivation of theoretical properties of such processes.

History

Regenerative processes were first defined by Walter L. Smith in Proceedings of the Royal Society A in 1955.[3][4]

Definition

A regenerative process is a stochastic process with time points at which, from a probabilistic point of view, the process restarts itself.[5] These time point may themselves be determined by the evolution of the process. That is to say, the process {X(t), t ≥ 0} is a regenerative process if there exist time points 0 ≤ T0 < T1 < T2 < ... such that the post-Tk process {X(Tk + t) : t ≥ 0}

  • has the same distribution as the post-T0 process {X(T0 + t) : t ≥ 0}
  • is independent of the pre-Tk process {X(t) : 0 ≤ t < Tk}

for k ≥ 1.[6] Intuitively this means a regenerative process can be split into i.i.d. cycles.[7]

When T0 = 0, X(t) is called a nondelayed regenerative process. Else, the process is called a delayed regenerative process.[6]

Examples

Properties

where is the length of the first cycle and is the value over the first cycle.

References

  1. ^ Hurter, A. P.; Kaminsky, F. C. (1967). "An Application of Regenerative Stochastic Processes to a Problem in Inventory Control". Operations Research. 15 (3): 467–472. doi:10.1287/opre.15.3.467. JSTOR 168455.
  2. ^ Ross, S. M. (2010). "Renewal Theory and Its Applications". Introduction to Probability Models. pp. 421–641. doi:10.1016/B978-0-12-375686-2.00003-0. ISBN 9780123756862.
  3. ^ Schellhaas, Helmut (1979). "Semi-Regenerative Processes with Unbounded Rewards". Mathematics of Operations Research. 4: 70–78. doi:10.1287/moor.4.1.70. JSTOR 3689240.
  4. ^ Smith, W. L. (1955). "Regenerative Stochastic Processes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 232 (1188): 6–31. Bibcode:1955RSPSA.232....6S. doi:10.1098/rspa.1955.0198.
  5. ^ a b c d Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0.
  6. ^ a b Haas, Peter J. (2002). "Regenerative Simulation". Stochastic Petri Nets. Springer Series in Operations Research and Financial Engineering. pp. 189–273. doi:10.1007/0-387-21552-2_6. ISBN 0-387-95445-7.
  7. ^ a b Asmussen, Søren (2003). "Regenerative Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 168–185. doi:10.1007/0-387-21525-5_6. ISBN 978-0-387-00211-8.
  8. ^ a b Sigman, Karl (2009) Regenerative Processes, lecture notes

Read other articles:

Dinas Buruh ReichReichsarbeitsdienst - RADBendera RADSkuat RAD tahun 1940Informasi lembagaDibentuk26 Juni 1935Nomenklatur sebelumnyaFrewilliger Arbeitsdienst (FAD)NationalsozialistischerArbeitsdienst (NSAD)Dibubarkan8 Mei 1945JenisTentara buruhWilayah hukum Jerman NaziPendudukan Jerman di EropaKantor pusatBerlin–Grunewald52°29′31″N 13°17′6″E / 52.49194°N 13.28500°E / 52.49194; 13.28500Pegawai200.000 (1935)350.000 (Oktober 1939)Pejabat eksekutifKonstantin ...

 

 

JägermeisterKarakteristikJenismerek, pemerekan dan Likeur AsalJerman Komposisianise seed (en) dan jahe Diperkenalkan1935 ProdusenMast-Jägermeister SE (en) Kadar alkohol35 vol% Warnahitam Situs webhttps://www.jagermeister.com [sunting di Wikidata]lbs Jägermeister (bahasa Jerman untuk pemburu profesional) adalah sejenis liqueur dengan kandungan alkohol 35% dengan rasa herbal. Minuman ini dibuat menggunakan 56 sari tumbuh-tumbuhan. Dari 56 sari tumbuhan yang dikandungnya, 50 dik...

 

 

Alpine mountain pass in Switzerland Fuorn PassFuorn PassElevation2,149 m (7,051 ft)Traversed byRoad 28LocationGraubünden, SwitzerlandRangeAlpsCoordinates46°38′23″N 10°17′32″E / 46.63972°N 10.29222°E / 46.63972; 10.29222Fuorn PassLocation in Switzerland Fuorn Pass or Ofen Pass (Romansh: Pass dal Fuorn, German: Ofenpass, Italian: Passo del Forno) (el. 2149 m.) is a high alpine mountain pass in the canton of Graubünden in Switzerland. The name is based on th...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Please help improve this article by introducing citations to additional sources.Find sources: European University of Rome – news · newspapers · books · scholar · JSTOR (November 2023) This article relies excessively on references to primary s...

 

 

Egyptian priestess (c. 945–712 BCE) Stela depicting Nehmes Bastet worshipping the composite funerary deity Ra-Horakhty-Atum-Osiris Nehmes Bastet[1] or Nehemes-Bastet[2] was an Ancient Egyptian priestess who held the office of chantress; she was the daughter of the high priest of Amun. She lived during the Twenty-second Dynasty (approximately 945–712 BC) and was buried in tomb KV64 in the Valley of the Kings.[3] It was excavated in 2012 and discovered to be a reuse ...

 

 

Detroit Street CircuitLokasiDetroit, Michigan, USAAcara besarFormula Satu, CART, Trans-Am1982 (Formula Satu)Panjang4.168 km (2.590 mi)Tikungan24Rekor lap1:50.438 ( Alain Prost, Renault RE30B, 1982)1983-1988 (Formula Satu)Panjang4.023 km (2.499 mi)Tikungan22Rekor lap1:40.464 ( Ayrton Senna, Lotus-Honda 99T, 1987) Sirkuit Jalan Raya Detroit merupakan jalur balapan temporer yang dibangun di pusat kota Detroit, Michigan dengan panjang 4.168 km. Lintasan itu diletakkan di sekitar dan melalui ...

Church in St Albans, United KingdomSs Alban and Stephen ChurchSt Alban and St Stephen's Church51°45′05″N 0°19′43″W / 51.75129°N 0.32857°W / 51.75129; -0.32857LocationSt AlbansCountryUnited KingdomDenominationRoman CatholicWebsiteAlbanStephen.orgHistoryStatusParish churchFounded22 June 1877DedicationSaint AlbanSaint StephenConsecrated4 May 1977EventsExtended 1965-7ArchitectureFunctional statusActiveArchitect(s)John KellyStyleItalianateGroundbreaking22 July ...

 

 

Questa voce o sezione sull'argomento contee dell'Ohio non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Contea di Hamiltoncontea LocalizzazioneStato Stati Uniti Stato federato Ohio AmministrazioneCapoluogoCincinnati Data di istituzione1790 TerritorioCoordinatedel capoluogo39°08′N 84°30′W / 39.133333°N 84.5°W39.133333; -84.5...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pipi – berita · surat kabar · buku · cendekiawan · JSTOR PipiSeorang gadis dengan pipi yang gembungRincianArteriArteri bukalSarafSaraf bukal, cabang bukal dari saraf wajahPengidentifikasiBahasa LatinBucc...

American prime time soap opera (1992–1999) This article is about the 1992-1999 TV series. For the 2009 revival, see Melrose Place (2009 TV series). For the street in Los Angeles, see Melrose Place (Los Angeles). Melrose PlaceGenreSoap opera[1]Created byDarren StarStarringLinden Ashby Josie Bissett Thomas Calabro David Charvet Marcia Cross Kristin Davis Rob Estes Brooke Langton Laura Leighton Amy Locane Jamie Luner Alyssa Milano John Haymes Newton Lisa Rinna Kelly Rutherford Doug Sav...

 

 

Vencer el desamorGenreTelenovelaPembuat Pedro Armando Rodríguez Claudia Velazco Ditulis oleh Humberto Robles Alejandra Romero Meza Gerardo Pérez Zermeño Gustavo Bracco Cecilia Oviedo Claudia Caro Cabello Sutradara Benjamín Cann Fernando Nesme Pemeran Claudia Álvarez David Zepeda Daniela Romo Altair Jarabo Juan Diego Covarrubias Emmanuel Palomares Julia Urbini Valentina Buzzurro Lagu pembukaVencer el desamoroleh Daniela Romo[1]Negara asalMeksikoBahasa asliSpanyolJmlh. musim1Jmlh....

 

 

Луис Тарук Дата рождения 21 июня 1913(1913-06-21)[1][2] Место рождения San Luis[d], Пампанга, Центральный Лусон, Филиппины Дата смерти 4 мая 2005(2005-05-04)[1][2] (91 год) Место смерти Кесон-Сити, Столичный регион, Филиппины[3] Страна  Филиппины Род деятельности полити...

Continental Army general (1727–1800) For other uses, see Artemas Ward (disambiguation). Artemas WardPortrait by Raphaelle Peale (c. 1795)Member of theU.S. House of Representatives from MassachusettsIn officeMarch 4, 1791 – March 3, 1795Serving with Dwight Foster, Theodore Sedgwick, and William Lyman (2nd District-GT)Preceded byGeorge LeonardSucceeded byWilliam LymanConstituency7th district (1791–93)2nd district (1793–95) Personal detailsBorn(1727-11-26)November ...

 

 

Type of rhetorical deductive argument Part of a series onRhetoric History Ancient Greece Asianism Atticism Attic orators Calliope Sophists Ancient India Ancient Rome The age of Cicero Second Sophistic Middle Ages Byzantine rhetoric Trivium Renaissance Studia humanitatis Modern period Concepts Captatio benevolentiae Chironomia Decorum Delectare Docere Device Eloquence Eloquentia perfecta Eunoia Enthymeme Facilitas Fallacy Informal Figure of speech Scheme Trope Five canons Inventio Dispositio E...

 

 

Mansion in Medina, Washington Bill Gates' houseGeneral informationArchitectural stylePacific lodgeLocationMedina, Washington, United StatesCoordinates47°37′40″N 122°14′31″W / 47.62774°N 122.24194°W / 47.62774; -122.24194Technical detailsStructural systemEarth-sheltered home Bill Gates designed and owns a mansion that overlooks Lake Washington in Medina, Washington. The 66,000-square-foot (6,100 m2) mansion[1] incorporates technology in its desi...

Low-pressure voids formed in liquids For other uses, see Cavitation (disambiguation). This article needs attention from an expert in Physics. The specific problem is: Several usages of the term appear to be mixed up. See the talk page for details. WikiProject Physics may be able to help recruit an expert. (July 2023) Cavitating propeller model in a water tunnel experiment Cavitation damage on a valve plate for an axial piston hydraulic pump This video shows cavitation in a gear pump Cavitatio...

 

 

Ruling party of Czechoslovakia from 1948 to 1989 KSČ redirects here. For other uses, see KSC. Communist Party of Czechoslovakia Komunistická strana ČeskoslovenskaGeneral SecretaryVáclav Šturc (first)Ladislav Adamec (last)Founded16 May 1921 (1921-05-16)Dissolved23 April 1992Split fromCzechoslovak Social Democratic Workers' PartySucceeded by Communist Party of Bohemia and Moravia (Czech Republic) Party of the Democratic Left (Slovakia) HeadquartersCentral Committee...

 

 

  Lichida Rango temporal: 497 Ma - 374,5 Ma PreЄ Є O S D C P T J K Pg N Furongiense - Frasniano Arctinurus boltoniTaxonomíaReino: AnimaliaFilo: ArthropodaClase: TrilobitaOrden: LichidaMoore, 1959[1]​Superfamilias Lichidae Lichakephalidae [editar datos en Wikidata] Los líquidos (Lichida) son un orden de trilobites que aparecen en el registro geológico desde el Cámbrico medio hasta el Frasniense (Devónico Superior).[2]​[3]​ Poseían un tórax cu...

أوروبا الشرقيةمعلومات عامةجزء من أوروبا الاسم المختصر 東欧 (باليابانية) 동구 (بالكورية) الإحداثيات 49°N 31°E / 49°N 31°E / 49; 31 إحداثيات أقصى نقطة في الشرق earth إحداثيات أقصى نقطة في الشمال earth إحداثيات أقصى نقطة في الجنوب earth إحداثيات أقصى نقطة في الغرب earth يدرسه دراسات أو...

 

 

Disambiguazione – Se stai cercando altri significati, vedi John Dalton (disambigua). Questa voce o sezione sugli argomenti fisici britannici e chimici britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. John Dalton John Dalton (Eaglesfield, 6 settembre 1766 – Manchester, 27 luglio 1844) è stato un chimico, fisico, meteorologo e insegnante ing...