Binomial options pricing model

In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

The binomial model was first proposed by William Sharpe in the 1978 edition of Investments (ISBN 013504605X),[1] and formalized by Cox, Ross and Rubinstein in 1979[2] and by Rendleman and Bartter in that same year.[3]

For binomial trees as applied to fixed income and interest rate derivatives see Lattice model (finance) § Interest rate derivatives.

Use of the model

The Binomial options pricing model approach has been widely used since it is able to handle a variety of conditions for which other models cannot easily be applied. This is largely because the BOPM is based on the description of an underlying instrument over a period of time rather than a single point. As a consequence, it is used to value American options that are exercisable at any time in a given interval as well as Bermudan options that are exercisable at specific instances of time. Being relatively simple, the model is readily implementable in computer software (including a spreadsheet).

Although computationally slower than the Black–Scholes formula, it is more accurate, particularly for longer-dated options on securities with dividend payments. For these reasons, various versions of the binomial model are widely used by practitioners in the options markets.[citation needed]

For options with several sources of uncertainty (e.g., real options) and for options with complicated features (e.g., Asian options), binomial methods are less practical due to several difficulties, and Monte Carlo option models are commonly used instead. When simulating a small number of time steps Monte Carlo simulation will be more computationally time-consuming than BOPM (cf. Monte Carlo methods in finance). However, the worst-case runtime of BOPM will be O(2n), where n is the number of time steps in the simulation. Monte Carlo simulations will generally have a polynomial time complexity, and will be faster for large numbers of simulation steps. Monte Carlo simulations are also less susceptible to sampling errors, since binomial techniques use discrete time units. This becomes more true the smaller the discrete units become.

Method

Binomial Lattice with CRR formulae
Binomial Lattice with CRR formulae
function americanPut(T, S, K, r, sigma, q, n) 
{ 
  '  T... expiration time
  '  S... stock price
  '  K... strike price
  '  r... interest rate
  '  sigma... volatility of the stock price
  '  q... dividend yield
  '  n... height of the binomial tree
  deltaT := T / n;
  up := exp(sigma * sqrt(deltaT));
  p0 := (up * exp(-q * deltaT) - exp(-r * deltaT)) / (up^2 - 1);
  p1 := exp(-r * deltaT) - p0;
  ' initial values at time T
  for i := 0 to n {
      p[i] := K - S * up^(2*i - n+1);
      if p[i] < 0 then p[i] := 0;
  }
  ' move to earlier times
  for j := n-1 down to 0 {
      for i := 0 to j {
          ' binomial value
          p[i] := p0 * p[i+1] + p1 * p[i];   
          ' exercise value
          exercise := K - S * up^(2*i - j+1);  
          if p[i] < exercise then p[i] := exercise;
      }
  }
  return americanPut := p[0];
}

The binomial pricing model traces the evolution of the option's key underlying variables in discrete-time. This is done by means of a binomial lattice (Tree), for a number of time steps between the valuation and expiration dates. Each node in the lattice represents a possible price of the underlying at a given point in time.

Valuation is performed iteratively, starting at each of the final nodes (those that may be reached at the time of expiration), and then working backwards through the tree towards the first node (valuation date). The value computed at each stage is the value of the option at that point in time.

Option valuation using this method is, as described, a three-step process:

  1. Price tree generation,
  2. Calculation of option value at each final node,
  3. Sequential calculation of the option value at each preceding node.

Step 1: Create the binomial price tree

The tree of prices is produced by working forward from valuation date to expiration.

At each step, it is assumed that the underlying instrument will move up or down by a specific factor ( or ) per step of the tree (where, by definition, and ). So, if is the current price, then in the next period the price will either be or .

The up and down factors are calculated using the underlying volatility, , and the time duration of a step, , measured in years (using the day count convention of the underlying instrument). From the condition that the variance of the log of the price is , we have:

Above is the original Cox, Ross, & Rubinstein (CRR) method; there are various other techniques for generating the lattice, such as "the equal probabilities" tree, see.[4][5]

The CRR method ensures that the tree is recombinant, i.e. if the underlying asset moves up and then down (u,d), the price will be the same as if it had moved down and then up (d,u)—here the two paths merge or recombine. This property reduces the number of tree nodes, and thus accelerates the computation of the option price.

This property also allows the value of the underlying asset at each node to be calculated directly via formula, and does not require that the tree be built first. The node-value will be:

Where is the number of up ticks and is the number of down ticks.

Step 2: Find option value at each final node

At each final node of the tree—i.e. at expiration of the option—the option value is simply its intrinsic, or exercise, value:

Max [ (Sn K), 0 ], for a call option
Max [ (KSn), 0 ], for a put option,

Where K is the strike price and is the spot price of the underlying asset at the nth period.

Step 3: Find option value at earlier nodes

Once the above step is complete, the option value is then found for each node, starting at the penultimate time step, and working back to the first node of the tree (the valuation date) where the calculated result is the value of the option.

In overview: the "binomial value" is found at each node, using the risk neutrality assumption; see Risk neutral valuation. If exercise is permitted at the node, then the model takes the greater of binomial and exercise value at the node.

The steps are as follows:

  1. Under the risk neutrality assumption, today's fair price of a derivative is equal to the expected value of its future payoff discounted by the risk free rate. Therefore, expected value is calculated using the option values from the later two nodes (Option up and Option down) weighted by their respective probabilities—"probability" p of an up move in the underlying, and "probability" (1−p) of a down move. The expected value is then discounted at r, the risk free rate corresponding to the life of the option.
    The following formula to compute the expectation value is applied at each node:
    , or
    where
    is the option's value for the node at time t,
    is chosen such that the related binomial distribution simulates the geometric Brownian motion of the underlying stock with parameters r and σ,
    q is the dividend yield of the underlying corresponding to the life of the option. It follows that in a risk-neutral world futures price should have an expected growth rate of zero and therefore we can consider for futures.
    Note that for p to be in the interval the following condition on has to be satisfied .
    (Note that the alternative valuation approach, arbitrage-free pricing, yields identical results; see “delta-hedging”.)
  2. This result is the "Binomial Value". It represents the fair price of the derivative at a particular point in time (i.e. at each node), given the evolution in the price of the underlying to that point. It is the value of the option if it were to be held—as opposed to exercised at that point.
  3. Depending on the style of the option, evaluate the possibility of early exercise at each node: if (1) the option can be exercised, and (2) the exercise value exceeds the Binomial Value, then (3) the value at the node is the exercise value.
    • For a European option, there is no option of early exercise, and the binomial value applies at all nodes.
    • For an American option, since the option may either be held or exercised prior to expiry, the value at each node is: Max (Binomial Value, Exercise Value).
    • For a Bermudan option, the value at nodes where early exercise is allowed is: Max (Binomial Value, Exercise Value); at nodes where early exercise is not allowed, only the binomial value applies.

In calculating the value at the next time step calculated—i.e. one step closer to valuation—the model must use the value selected here, for "Option up"/"Option down" as appropriate, in the formula at the node. The aside algorithm demonstrates the approach computing the price of an American put option, although is easily generalized for calls and for European and Bermudan options:

Relationship with Black–Scholes

Similar assumptions underpin both the binomial model and the Black–Scholes model, and the binomial model thus provides a discrete time approximation to the continuous process underlying the Black–Scholes model. The binomial model assumes that movements in the price follow a binomial distribution; for many trials, this binomial distribution approaches the log-normal distribution assumed by Black–Scholes. In this case then, for European options without dividends, the binomial model value converges on the Black–Scholes formula value as the number of time steps increases.[4][5]

In addition, when analyzed as a numerical procedure, the CRR binomial method can be viewed as a special case of the explicit finite difference method for the Black–Scholes PDE; see finite difference methods for option pricing.[6]

See also

References

  1. ^ William F. Sharpe, Biographical, nobelprize.org
  2. ^ Cox, J. C.; Ross, S. A.; Rubinstein, M. (1979). "Option pricing: A simplified approach". Journal of Financial Economics. 7 (3): 229. CiteSeerX 10.1.1.379.7582. doi:10.1016/0304-405X(79)90015-1.
  3. ^ Richard J. Rendleman, Jr. and Brit J. Bartter. 1979. "Two-State Option Pricing". Journal of Finance 24: 1093-1110. doi:10.2307/2327237
  4. ^ a b Mark s. Joshi (2008). The Convergence of Binomial Trees for Pricing the American Put
  5. ^ a b Chance, Don M. March 2008 A Synthesis of Binomial Option Pricing Models for Lognormally Distributed Assets Archived 2016-03-04 at the Wayback Machine. Journal of Applied Finance, Vol. 18
  6. ^ Rubinstein, M. (2000). "On the Relation Between Binomial and Trinomial Option Pricing Models". Journal of Derivatives. 8 (2): 47–50. CiteSeerX 10.1.1.43.5394. doi:10.3905/jod.2000.319149. S2CID 11743572. Archived from the original on June 22, 2007.

Read other articles:

Наруто Удзумаки Часть I (низ), Часть II (центр) и во франшизе Боруто (верх) Появление Манга: 1 глава Аниме: I часть 1 серия Создатель Масаси Кисимото Сэйю Дзюнко Такэути Информация Рост I часть: 145,3—147,5 смII часть: 172 смlll часть: 180 см Вес I часть: 40,1—40,6 кг II часть: 50,9 кг The last: 62,4 кг III ч�...

 

 

Pour l’article homonyme, voir Gonçalves Dias (Maranhão). Gonçalves DiasGonçalves DiasBiographieNaissance 10 août 1823CaxiasDécès 3 novembre 1864 (à 41 ans)GuimarãesNationalité Empire du BrésilFormation Faculté de droit de l’université de Coimbra (d)Activités Dramaturge, ethnologue, avocat, professeur d'université, journaliste, écrivain, théâtrologue, poète, historienAutres informationsMembre de Académie brésilienne des lettresMouvements Romantisme du Brésil (d)...

 

 

Gulungan Kitab Mazmur Mazmur 44 (Penomoran Septuaginta: Mazmur 43) adalah sebuah mazmur dalam bagian ke-2 Kitab Mazmur di Alkitab Ibrani dan Perjanjian Lama dalam Alkitab Kristen. Mazmur ini digubah oleh bani Korah.[1][2] Teks Naskah sumber utama: Masoretik, Septuaginta dan Naskah Laut Mati. Pasal ini terdiri dari 27 ayat. Dalam versi Terjemahan Baru dari Lembaga Alkitab Indonesia, mazmur ini diberi judul Jeritan bangsa yang tertindas. Termasuk jenis mazmur ratapan dan doa. Tr...

Gua ToakalaLeang Toakala, Leang Towukala, Gua TowukalaLokasiDesa Jenetaesa, Kecamatan Simbang, Kabupaten Maros, Sulawesi Selatan, IndonesiaPanjang80 mGeologikarst / batu kapur / batu gampingSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.idkebudayaan.kemdikbud.go.id/bpcbsulsel/ Gua Toakala atau Leang Toakala (Inggris: Toakala Cave ) adalah sebuah gua di Kawasan Karst Maros-Pangkep, bagian area Taman Wisata Alam Bantimurung di Taman Nasional Bantimurung-Bulusaraung. Lokasi gua ini s...

 

 

Species of bat Eastern red bat Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Chiroptera Family: Vespertilionidae Genus: Lasiurus Species: L. borealis Binomial name Lasiurus borealisMüller, 1776 Range (note: map erroneously shows the species to be present in Cuba.) Synonyms Vespertilio borealis Müller, 1776 Vespertilio noveboracensis Erxleben, 1777 Vespertilio lasiurus S...

 

 

سور تروندلاغ    علم شعار   الإحداثيات 63°23′N 10°16′E / 63.39°N 10.26°E / 63.39; 10.26   [1] تاريخ التأسيس 1919  تقسيم إداري  البلد النرويج[2][3]  التقسيم الأعلى النرويج  العاصمة تروندهايم  تاريخ الإلغاء 31 ديسمبر 2017  التقسيمات الإدارية أغديني�...

Radio station in Rome, Georgia WLAQRome, GeorgiaBroadcast areaRome metropolitan area, GeorgiaFrequency1410 kHzBrandingAM 1410ProgrammingFormatNews Talk InformationAffiliationsCBS News RadioOwnershipOwnerCripple Creek Broadcasting CompanyTechnical informationFacility ID14502ClassBPower1,000 watts day1,000 watts nightTransmitter coordinates34°15′43.00″N 85°12′22.00″W / 34.2619444°N 85.2061111°W / 34.2619444; -85.2061111Translator(s)96.9 W245DG (Rome)Link...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Villa del Prado, Baja California – news · newspapers · books · scholar · JSTOR (October 2019) Villa del Prado (Spanish for Town of the Meadow) is a city in Baja California in Tijuana Municipality. The city had a population of 12,303 as of 2010.[1&...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Zalim KishevInformasi pribadiNama lengkap Zalim Zaurbiyevich KishevTanggal lahir 18 Juli 1990 (umur 33)Tinggi 1,70 m (5 ft 7 in)Posisi bermain BekInformasi klubKlub saat ini FC Angusht NazranKarier senior*Tahun Tim Tampil (Gol)200...

Voce principale: Associazione Sportiva Giovanile Nocerina. Associazione Sportiva Giovanile NocerinaStagione 2012-2013Sport calcio SquadraAssociazione Sportiva Giovanile Nocerina Dilettanti Allenatore Gaetano Auteri Presidente Giovanni Citarella Lega Pro Prima Divisione4° Coppa ItaliaSecondo turno Coppa Italia Lega ProSecondo turno 2011-2012 2013-2014 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Sportiva Giovanile Nocerina nelle comp...

 

 

Perang Kemerdekaan ArgentinaPertemuan José de San Martín dan Manuel Belgrano di Yatasto.Tanggal1810 - 1818LokasiArgentina, Chili, Uruguay, Paraguay dan BoliviaHasil Kemenangan Argentina dan kemerdekaan dari kekuasaan kolonial Spanyol, perbudakan dihapuskanPihak terlibat  Argentina  Chile SpanyolTokoh dan pemimpin Manuel Belgrano José de San Martín Martín Miguel de Güemes William Brown Bernardo O'Higgins Antonio Pareja Gabino Gaínza Mariano Osorio Joaquín de la Pezuela Perang...

 

 

For other people with the same name, see William George. Bill GeorgePresident of the Pennsylvania AFL–CIOIn officeJune 1, 1990 – June 1, 2010Preceded byJulius UehleinSucceeded byRick Bloomingdale Personal detailsPolitical partyDemocraticResidence(s)Mechanicsburg, Pennsylvania, U.S.OccupationLabor Leader, Mill Worker William M. George is an American labor union activist and political leader who served as President of the Pennsylvania AFL–CIO from 1990 to 2010. Early professional...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

 

 

Former constellation Felis Felis (Latin for cat) was a constellation created by French astronomer Jérôme Lalande in 1799. He chose the name partly because, as a cat lover, he felt sorry that there was not yet a cat among the constellations (although there are two lions and a lynx). It was between the constellations of Antlia and Hydra. This constellation was first depicted in the Uranographia sive Astrorum Descriptio (1801) of Johann Elert Bode. It is now obsolete.[1] Its brightest ...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Lactifluus volemus Klasifikasi ilmiah Kerajaan: Fungi Divisi: Basidiomycota Kelas: Agaricomycetes Ordo: Russulales Famili: Russulaceae Genus: Lactifluus Spesies: L. volemus Nama binomial Lactifluus volemus(Fr.) Kuntze (1891) Sinonim Daftar Agaric...

 

 

A coal surface mining site in Bihar, India A mountaintop removal mining operation in the United States Part of a series onCoal Economic use Ammonia Anthracite Bituminous coal Charcoal Coal combustion products Coal-fired power station Coal gas Coal in Australia Canada Europe India Poland Russia South Africa Turkey Ukraine Coal mining in Chile in the UK in the USA Coal-mining region Coal power in China in the USA Coal preparation plant Coal tar Coke (fuel) Coking Metallurgical coal Externaliti...

 

 

British politician and writer (1855–1909) The Right HonourableH. O. Arnold-ForsterSecretary of State for WarIn office12 October 1903 – 4 December 1905MonarchEdward VIIPrime MinisterArthur BalfourPreceded byHon. St John BrodrickSucceeded byRichard Haldane Personal detailsBorn(1855-08-19)19 August 1855Died12 March 1909(1909-03-12) (aged 53)NationalityBritishPolitical partyLiberal UnionistSpouse Mary Story-Maskelyne (1861–1951) ​ ​(m. 1885)​...

Japanese prince Yasuhito redirects here. For the 18th-century noble, see Emperor Nakamikado. YasuhitoPrince ChichibuPrince Chichibu in December 1940BornYasuhito, Prince Atsu(淳宮雍仁親王)(1902-06-25)25 June 1902Aoyama Detached Palace, Tokyo City, JapanDied4 January 1953(1953-01-04) (aged 50)Kugenuma Villa, Fujisawa, Kanagawa, JapanBurial12 January 1953Toshimagaoka Imperial Cemetery, Bunkyo, TokyoSpouse Setsuko Matsudaira ​(m. 1928)​HouseImperial House o...

 

 

American oceanographer David TitleyTitley in 2009Born1958 (age 65–66)Schenectady, New YorkMilitary careerAllegiance United StatesService/branch United States Navy NOAA Commissioned Officer Corps Alma materPenn State, Naval Postgraduate SchoolAwardsFellow of the American Meteorological Society since 2009Scientific careerFieldsMeteorology, oceanographyInstitutionsU.S. Navy, NOAA Corps, Penn StateThesisIntensification and structure change of super Typhoon Flo as related to t...