Borel–Cantelli lemma

In probability theory, the Borel–Cantelli lemma is a theorem about sequences of events. In general, it is a result in measure theory. It is named after Émile Borel and Francesco Paolo Cantelli, who gave statement to the lemma in the first decades of the 20th century.[1][2] A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states that, under certain conditions, an event will have probability of either zero or one. Accordingly, it is the best-known of a class of similar theorems, known as zero-one laws. Other examples include Kolmogorov's zero–one law and the Hewitt–Savage zero–one law.

Statement of lemma for probability spaces

Let E1, E2, ... be a sequence of events in some probability space. The Borel–Cantelli lemma states:[3][4]

Borel–Cantelli lemma — If the sum of the probabilities of the events {En} is finite then the probability that infinitely many of them occur is 0, that is,

Here, "lim sup" denotes limit supremum of the sequence of events, and each event is a set of outcomes. That is, lim sup En is the set of outcomes that occur infinitely many times within the infinite sequence of events (En). Explicitly, The set lim sup En is sometimes denoted {En i.o.}, where "i.o." stands for "infinitely often". The theorem therefore asserts that if the sum of the probabilities of the events En is finite, then the set of all outcomes that are "repeated" infinitely many times must occur with probability zero. Note that no assumption of independence is required.

Example

Suppose (Xn) is a sequence of random variables with Pr(Xn = 0) = 1/n2 for each n. The probability that Xn = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [Xn = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr(Xn = 0) converges to π2/6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma states that the set of outcomes that are common to infinitely many such events occurs with probability zero. Hence, the probability of Xn = 0 occurring for infinitely many n is 0. Almost surely (i.e., with probability 1), Xn is nonzero for all but finitely many n.

Proof

Let (En) be a sequence of events in some probability space.

The sequence of events is non-increasing: By continuity from above, By subadditivity, By original assumption, As the series converges, as required.[5]

General measure spaces

For general measure spaces, the Borel–Cantelli lemma takes the following form:

Borel–Cantelli Lemma for measure spaces — Let μ be a (positive) measure on a set X, with σ-algebra F, and let (An) be a sequence in F. If then

Converse result

A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states: If the events En are independent and the sum of the probabilities of the En diverges to infinity, then the probability that infinitely many of them occur is 1. That is:[4]

Second Borel–Cantelli Lemma — If and the events are independent, then

The assumption of independence can be weakened to pairwise independence, but in that case the proof is more difficult.

The infinite monkey theorem follows from this second lemma.

Example

The lemma can be applied to give a covering theorem in Rn. Specifically (Stein 1993, Lemma X.2.1), if Ej is a collection of Lebesgue measurable subsets of a compact set in Rn such that then there is a sequence Fj of translates such that apart from a set of measure zero.

Proof

Suppose that and the events are independent. It is sufficient to show the event that the En's did not occur for infinitely many values of n has probability 0. This is just to say that it is sufficient to show that

Noting that: it is enough to show: . Since the are independent: The convergence test for infinite products guarantees that the product above is 0, if diverges. This completes the proof.

Counterpart

Another related result is the so-called counterpart of the Borel–Cantelli lemma. It is a counterpart of the Lemma in the sense that it gives a necessary and sufficient condition for the limsup to be 1 by replacing the independence assumption by the completely different assumption that is monotone increasing for sufficiently large indices. This Lemma says:

Let be such that , and let denote the complement of . Then the probability of infinitely many occur (that is, at least one occurs) is one if and only if there exists a strictly increasing sequence of positive integers such that This simple result can be useful in problems such as for instance those involving hitting probabilities for stochastic process with the choice of the sequence usually being the essence.

Kochen–Stone

Let be a sequence of events with and Then there is a positive probability that occur infinitely often.

Proof

Let . Then, note that and Hence, we know that We have that Now, notice that by the Cauchy-Schwarz Inequality, therefore, We then have Given , since , we can find large enough so that for any given . Therefore, But the left side is precisely the probability that the occur infinitely often since We're done now, since we've shown that

See also

References

  1. ^ E. Borel, "Les probabilités dénombrables et leurs applications arithmetiques" Rend. Circ. Mat. Palermo (2) 27 (1909) pp. 247–271.
  2. ^ F.P. Cantelli, "Sulla probabilità come limite della frequenza", Atti Accad. Naz. Lincei 26:1 (1917) pp.39–45.
  3. ^ Klenke, Achim (2006). Probability Theory. Springer-Verlag. ISBN 978-1-84800-047-6.
  4. ^ a b Shiryaev, Albert N. (2016). Probability-1: Volume 1. Graduate Texts in Mathematics. Vol. 95. New York, NY: Springer New York. doi:10.1007/978-0-387-72206-1. ISBN 978-0-387-72205-4.
  5. ^ "Romik, Dan. Probability Theory Lecture Notes, Fall 2009, UC Davis" (PDF). Archived from the original (PDF) on 2010-06-14.

Read other articles:

Weling Bungarus candidus Status konservasiRisiko rendahIUCN192238 TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataFamiliElapidaeGenusBungarusSpesiesBungarus candidus Linnaeus, 1758 Tata namaSinonim taksonColuber candidus Linnaeus, 1758[1] Bungarus javanicus Kopstein, 1932[2]lbs Weling (Bungarus candidus) adalah spesies krait yang endemik di Asia Tenggara. Selain weling, ular ini juga disebut ular belang, nama yang juga digunakan untuk kerabatnya yang lebih besar...

 

 

العلاقات اللبنانية الفرنسية   لبنان   فرنسا تعديل مصدري - تعديل   العلاقات الفرنسية اللبنانية هي العلاقات الدولية بين الجمهورية اللبنانية والجمهورية الفرنسية حيث تتمتع فرنسا القوة الاستعمارية السابقة بعلاقات ودية مع لبنان وغالباً ما قدمت الدعم للبنانيين، ...

 

 

العلاقات الزامبية السلوفاكية زامبيا سلوفاكيا   زامبيا   سلوفاكيا تعديل مصدري - تعديل   العلاقات الزامبية السلوفاكية هي العلاقات الثنائية التي تجمع بين زامبيا وسلوفاكيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

Первая лига Промоушен Основан 2012 Регион Швейцария Число участников 18 Уровень в системе лиг 3 Выход в  Челлендж-лига Выбывание в  Первая лига Международные турниры Лига Европы через кубок страны Сайт el-pl.ch 2022/2023 Первая лига Промоушен (1. Liga Promotion) — третья по значимос...

 

 

County in Arkansas, United States County in ArkansasDrew CountyCountyDrew County Courthouse in MonticelloLocation within the U.S. state of ArkansasArkansas's location within the U.S.Coordinates: 33°35′04″N 91°43′51″W / 33.5844°N 91.7308°W / 33.5844; -91.7308Country United StatesState ArkansasFoundedNovember 26, 1846Named forThomas DrewSeatMonticelloLargest cityMonticelloGovernment • County JudgeJessi GriffinArea • Total836&...

 

 

Cycling competition Men's omnium at the 2021 UEC European Track ChampionshipsVenueTissot Velodrome, GrenchenDate8 OctoberCompetitors24 from 24 nationsWinning points136Medalists  Alan Banaszek   Poland Fabio Van den Bossche   Belgium Matias Malmberg   Denmark← 20202022 → 2021 UEC EuropeanTrack ChampionshipsSprintmenwomenTeam sprintmenwomenTeam pursuitmenwomenKeirinmenwomenOmniummenwomenMadisonmenwomenTime tr...

Primera División 1959-1960 Competizione Primera División Sport Calcio Edizione 29ª Organizzatore RFEF Date dal 13 settembre 1959al 17 aprile 1960 Luogo  Spagna Partecipanti 16 Formula Girone all'italiana Risultati Vincitore Barcellona(8º titolo) Retrocessioni OsasunaLas Palmas Statistiche Miglior marcatore Ferenc Puskás (26) Incontri disputati 240 Gol segnati 807 (3,36 per incontro) Cronologia della competizione 1958-1959 1960-1961 Manuale La Primera División 195...

 

 

Film directed by Lucio Fulci Sodoma's GhostPromo art for Sodoma's GhostDirected byLucio FulciScreenplay by Lucio Fulci Carlo Alberto Alfieri[1] Story by Lucio Fulci Carlo Alberto Alfieri[1] Produced by Lugi Nannerini Antononio Lucidi[2] Starring Claudio Aliotti Maria Concetta Salieri Robert Egon Al Cliver CinematographySilvano Tessicini[1]Edited byVincenzo Tomassi[1]Music byCarlo Maria Cordio[1]ProductioncompanyCine Duck[2]Running time84...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2015) (Learn how and when to remove this message)This article contains content that is written like an advertiseme...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Roppongi Station – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this message)Metro station in Tokyo, Japan H04 E23 Roppongi Station六本木駅Exit No. 7 in July 2008General informationLocationRoppongi 6-1-25 (Tokyo Metro...

 

 

Census-designated place in North Carolina, United StatesRougemont, North CarolinaCensus-designated placeLocation in Durham County and the state of North CarolinaCoordinates: 36°13′15″N 78°55′14″W / 36.22083°N 78.92056°W / 36.22083; -78.92056CountryUnited StatesStateNorth CarolinaCountyDurham and PersonArea[1] • Total6.39 sq mi (16.56 km2) • Land6.32 sq mi (16.36 km2) • Water0.08 ...

 

 

Les problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en 2000. La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En 2024, six des sept problèmes demeurent non résolus. Description générale Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirm�...

This article is about the people from the republic of India. For other uses, see Indian. Demographics of IndiaIndia population pyramid in 2020Population 1,425,775,850[1] (April 2023 est.) 1,428,627,663[2] (Mid-year 2023 est.)Density473.42 people per.km2 (2021 est.)[3]Growth rate0.68% (2022 est.)[3]Birth rate16.1 births/1,000 population (2023 est.)[3]Death rate6.6 deaths/1,000 population (2023 est.)[3]Life expectancy 72.03 years (2023 est.)...

 

 

المحاق المحاق[1] (بالإنجليزية: New Moon)‏ مبتدأ أطوار القمر ومنتهاها والمحاق هو غياب ضوء القمر المنعكس بسبب وقوع القمر بين الأرض وامام الشمس أي انعدام وجود جزء منعكس يمكن رؤيته من الأرض. وسمي بالمحاق (لغةً) لانمحاق نوره واختفائه وحينئذ يحدث اقتران الشمس والقمر ومولد شهر هجر...

 

 

1954 novel by William Golding This article is about the novel by William Golding. For the film adaptations, see Lord of the Flies (1963 film) and Lord of the Flies (1990 film). For other uses, see Lord of the Flies (disambiguation). Lord of the Flies The original UK Lord of the Flies book coverAuthorWilliam GoldingCover artistAnthony Gross[1]GenreAllegorical novelPublisherFaber and FaberPublication date17 September 1954Publication placeUnited KingdomPages224[2]OCLC4767762...

American jazz double bassist For the American government official, see Peter Grayson Washington. For the American baseball player, see Pete Washington. Peter WashingtonBackground informationBorn (1964-08-28) August 28, 1964 (age 59)Los Angeles, California, U.S.GenresJazzOccupation(s)MusicianInstrument(s)BassYears active1978–presentMusical artist Peter Washington (born on August 28, 1964 in Los Angeles, California) is a jazz double bassist. He played with the Westchester Community Symph...

 

 

ميرباكا   تقسيم إداري البلد اليونان  [1] خصائص جغرافية إحداثيات 37°38′16″N 22°48′15″E / 37.637676°N 22.804082°E / 37.637676; 22.804082   الارتفاع 30 متر  السكان التعداد السكاني 999 (إحصاء السكان) (2021)1248 (resident population of Greece) (2001)1179 (resident population of Greece) (1991)1151 (resident population of Greece) (2011)1225 (de f...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Mo-2 Kal. 60 mm LR adalah senjata api tipe mortir yag diproduksi oleh PT Pindad. Pelontar mortir ini mampu melontarkan amunisi kaliber 60mm sejauh 4 kilometer, dari sinilah akronim 'LR' atau long range disematkan. Seperti halnya mortir pada umumny...

Pemilihan Umum Bupati Banggai 2020201520249 Desember 2020[1]Kandidat   Calon Sulianti Murad Amirudin Tamoreka Herwin Yatim Partai Gerindra NasDem PDI-P Pendamping Zainal Abidin Ali Hamu Furqanuddin Masulili Mustar Labolo Peta persebaran suara Peta Sulawesi Tengah yang menyoroti Kabupaten Banggai Bupati dan Wakil Bupati petahanaHerwin Yatim dan Mustar Labolo PDI-P Bupati dan Wakil Bupati terpilih belum diketahui Pemilihan Umum Bupati Banggai 2020 adalah pemilihan umum lokal yang ...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. 35°49′00″N 5°44′55″W / 35.816667°N 5.748611°W / 35.816667; -5.748611رأس مالاباطا هو أرض رأسي يقع 10 كليومتر شرق مدينة طنجة المغربية مقابل مضيق جبل طارق.[1] يوجد في الأرض الرأسية منارة ...