Timeline of atomic and subatomic physics

A timeline of atomic and subatomic physics, including particle physics.

Antiquity

  • 6th - 2nd Century BCE Kanada (philosopher) proposes that anu is an indestructible particle of matter, an "atom"; anu is an abstraction and not observable.[1]
  • 430 BCE[2] Democritus speculates about fundamental indivisible particles—calls them "atoms"

The beginning of chemistry

The age of quantum mechanics

Quantum field theory

The formation and successes of the Standard Model

See also

References

  1. ^ Narayan, Rupa (2013). Space, Time and Anu in Vaisheshika (PDF). Louisiana State University, Baton Rouge, USA.
  2. ^ Teresi, Dick (2010). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. pp. 213–214. ISBN 978-1-4391-2860-2.
  3. ^ Jammer, Max (1966), The conceptual development of quantum mechanics, New York: McGraw-Hill, OCLC 534562
  4. ^ Tivel, David E. (September 2012). Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology. Dorrance Publishing. ISBN 9781434929747.
  5. ^ Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, 18 December 1926, pp. 874–875).
  6. ^ The origin of the word "photon"
  7. ^ The Davisson–Germer experiment, which demonstrates the wave nature of the electron
  8. ^ A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911
  9. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  10. ^ Richard Feynman; QED. Princeton University Press: Princeton, (1982)
  11. ^ Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986)
  12. ^ Feynman, R.P. (2001) [1964]. The Character of Physical Law. MIT Press. ISBN 0-262-56003-8.
  13. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  14. ^ Schweber, Silvan S.; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN 0-691-03327-7
  15. ^ Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN 0-486-60444-6
  16. ^ *Kleinert, H. (2008). Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation (PDF). World Scientific. ISBN 978-981-279-170-2.
  17. ^ Yndurain, Francisco Jose; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN 0-387-11752-0
  18. ^ a b Frank Wilczek (1999) "Quantum field theory", Reviews of Modern Physics 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71.
  19. ^ Englert, F.; Brout, R. (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons". Physical Review Letters. 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
  20. ^ Higgs, P.W. (1964). "Broken Symmetries and the Masses of Gauge Bosons". Physical Review Letters. 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
  21. ^ Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters. 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.
  22. ^ Guralnik, G.S. (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". International Journal of Modern Physics A. 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID 16298371.
  23. ^ Kibble, T.W.B. (2009). "Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism". Scholarpedia. 4 (1): 6441. Bibcode:2009SchpJ...4.6441K. doi:10.4249/scholarpedia.6441.
  24. ^ M. Blume; S. Brown; Y. Millev (2008). "Letters from the past, a PRL retrospective (1964)". Physical Review Letters. Retrieved 30 January 2010.
  25. ^ "J. J. Sakurai Prize Winners". American Physical Society. 2010. Retrieved 30 January 2010.
  26. ^ Weinberg, Steven; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) ISBN 0-521-55001-7. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608.
  27. ^ Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN 0-521-55001-7, pp. 489.
  28. ^ * Gerard 't Hooft (2007) "The Conceptual Basis of Quantum Field Theory" in Butterfield, J., and John Earman, eds., Philosophy of Physics, Part A. Elsevier: 661-730.
  29. ^ Wilczek, Frank (1999). "Quantum field theory". Reviews of Modern Physics. 71 (2): S85 – S95. arXiv:hep-th/9803075. Bibcode:1999RvMPS..71...85W. doi:10.1103/RevModPhys.71.S85. S2CID 279980.
  30. ^ a b c "Fermilab | Science | Particle Physics | Key Discoveries". www.fnal.gov. Retrieved 26 August 2020.
  31. ^ Pais, Abraham; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN 0-19-851997-4 Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.)
  32. ^ Fukuda, Y.; et al. (Super-Kamiokande Collaboration) (24 August 1998). "Evidence for Oscillation of Atmospheric Neutrinos". Physical Review Letters. 81 (8): 1562–1567. arXiv:hep-ex/9807003. Bibcode:1998PhRvL..81.1562F. doi:10.1103/PhysRevLett.81.1562.
  33. ^ "Press Release: The 1999 Nobel Prize in Chemistry". 12 October 1999. Retrieved 30 June 2013.
  34. ^ "New State of Matter created at CERN". CERN. Retrieved 22 May 2020.
  35. ^ "Lene Hau". Physicscentral.com. Retrieved 30 January 2013.
  36. ^ "RHIC Scientists Serve Up 'Perfect' Liquid". Brookhaven National Laboratory. Retrieved 26 August 2020.
  37. ^ "CERN experiments observe particle consistent with long-sought Higgs boson". CERN. Retrieved 22 May 2020.
  38. ^ LHCb Collaboration (4 June 2014). "Observation of the Resonant Character of the Z ( 4430 ) − State". Physical Review Letters. 112 (22): 222002. doi:10.1103/PhysRevLett.112.222002. hdl:2445/133080. PMID 24949760. S2CID 904429.
  39. ^ T2K Collaboration (10 February 2014). "Observation of Electron Neutrino Appearance in a Muon Neutrino Beam". Physical Review Letters. 112 (6): 061802. arXiv:1311.4750. Bibcode:2014PhRvL.112f1802A. doi:10.1103/PhysRevLett.112.061802. hdl:10044/1/20051. PMID 24580687. S2CID 2586182.
  40. ^ OPERA Collaboration (28 October 2014). "Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment". Progress of Theoretical and Experimental Physics. 2014 (10): 101C01. arXiv:1407.3513. doi:10.1093/ptep/ptu132.