Let X be a topological space, and let be an open cover of X. Let denote the nerve of the covering. The idea of Čech cohomology is that, for an open cover consisting of sufficiently small open sets, the resulting simplicial complex should be a good combinatorial model for the space X. For such a cover, the Čech cohomology of X is defined to be the simplicialcohomology of the nerve. This idea can be formalized by the notion of a good cover. However, a more general approach is to take the direct limit of the cohomology groups of the nerve over the system of all possible open covers of X, ordered by refinement. This is the approach adopted below.
A q-simplex σ of is an ordered collection of q+1 sets chosen from , such that the intersection of all these sets is non-empty. This intersection is called the support of σ and is denoted |σ|.
Now let be such a q-simplex. The j-th partial boundary of σ is defined to be the (q−1)-simplex obtained by removing the j-th set from σ, that is:
The boundary of σ is defined as the alternating sum of the partial boundaries:
viewed as an element of the free abelian group spanned by the simplices of .
Cochain
A q-cochain of with coefficients in is a map which associates with each q-simplex σ an element of , and we denote the set of all q-cochains of with coefficients in by . is an abelian group by pointwise addition.
Differential
The cochain groups can be made into a cochain complex by defining the coboundary operator by:
where is the restriction morphism from to (Notice that ∂jσ ⊆ σ, but |σ| ⊆ |∂jσ|.)
A q-cochain is called a q-cocycle if it is in the kernel of , hence is the set of all q-cocycles.
Thus a (q−1)-cochain is a cocycle if for all q-simplices the cocycle condition
holds.
A 0-cocycle is a collection of local sections of satisfying a compatibility relation on every intersecting
A 1-cocycle satisfies for every non-empty with
Coboundary
A q-cochain is called a q-coboundary if it is in the image of and is the set of all q-coboundaries.
For example, a 1-cochain is a 1-coboundary if there exists a 0-cochain such that for every intersecting
Cohomology
The Čech cohomology of with values in is defined to be the cohomology of the cochain complex . Thus the qth Čech cohomology is given by
.
The Čech cohomology of X is defined by considering refinements of open covers. If is a refinement of then there is a map in cohomology The open covers of X form a directed set under refinement, so the above map leads to a direct system of abelian groups. The Čech cohomology of X with values in is defined as the direct limit of this system.
The Čech cohomology of X with coefficients in a fixed abelian group A, denoted , is defined as where is the constant sheaf on X determined by A.
A variant of Čech cohomology, called numerable Čech cohomology, is defined as above, except that all open covers considered are required to be numerable: that is, there is a partition of unity {ρi} such that each support is contained in some element of the cover. If X is paracompact and Hausdorff, then numerable Čech cohomology agrees with the usual Čech cohomology.
If X is a differentiable manifold and the cover of X is a "good cover" (i.e. all the sets Uα are contractible to a point, and all finite intersections of sets in are either empty or contractible to a point), then is isomorphic to the de Rham cohomology.
If X is compact Hausdorff, then Čech cohomology (with coefficients in a discrete group) is isomorphic to Alexander-Spanier cohomology.
For a presheaf on X, let denote its sheafification. Then we have a natural comparison map
from Čech cohomology to sheaf cohomology. If X is paracompact Hausdorff, then is an isomorphism. More generally, is an isomorphism whenever the Čech cohomology of all presheaves on X with zero sheafification vanishes.[2]
In algebraic geometry
Čech cohomology can be defined more generally for objects in a siteC endowed with a topology. This applies, for example, to the Zariski site or the etale site of a schemeX. The Čech cohomology with values in some sheaf is defined as
where the colimit runs over all coverings (with respect to the chosen topology) of X. Here is defined as above, except that the r-fold intersections of open subsets inside the ambient topological space are replaced by the r-fold fiber product
As in the classical situation of topological spaces, there is always a map
from Čech cohomology to sheaf cohomology. It is always an isomorphism in degrees n = 0 and 1, but may fail to be so in general. For the Zariski topology on a Noetherianseparated scheme, Čech and sheaf cohomology agree for any quasi-coherent sheaf. For the étale topology, the two cohomologies agree for any étale sheaf on X, provided that any finite set of points of X are contained in some open affine subscheme. This is satisfied, for example, if X is quasi-projective over an affine scheme.[3]
The possible difference between Čech cohomology and sheaf cohomology is a motivation for the use of hypercoverings: these are more general objects than the Čech nerve
A hypercovering K∗ of X is a certain simplicial object in C, i.e., a collection of objects Kn together with boundary and degeneracy maps. Applying a sheaf to K∗ yields a simplicial abelian group whose n-th cohomology group is denoted . (This group is the same as in case K∗ equals .) Then, it can be shown that there is a canonical isomorphism
where the colimit now runs over all hypercoverings.[4]
Examples
The most basic example of Čech cohomology is given by the case where the presheaf is a constant sheaf, e.g. . In such cases, each -cochain is simply a function which maps every -simplex to . For example, we calculate the first Čech cohomology with values in of the unit circle . Dividing into three arcs and choosing sufficiently small open neighborhoods, we obtain an open cover where but .
Given any 1-cocycle , is a 2-cochain which takes inputs of the form where (since and hence is not a 2-simplex for any permutation ). The first three inputs give ; the fourth gives
Such a function is fully determined by the values of . Thus,
On the other hand, given any 1-coboundary , we have
However, upon closer inspection we see that and hence each 1-coboundary is uniquely determined by and . This gives the set of 1-coboundaries:
National park in Kyushu, Japan Yakushima National Park霧島屋久国立公園IUCN category II (national park)View of the Bōzuiwa in the national parkLocationYakushima island, Kagoshima Prefecture, Kyushu, JapanCoordinates30°20′N 130°32′E / 30.33°N 130.53°E / 30.33; 130.53Area325.53 km²Established16 March 2012Governing bodyMinistry of the Environment (Japan) Yakushima National Park (屋久島国立公園, Yakushima Kokuritsu Kōen) is a protected area lo...
2008 2015 (départementales) Élections cantonales de 2011 dans la Haute-Marne 16 des 32 cantons de la Haute-Marne 20 et 27 mars 2011 Type d’élection Élections cantonales Majorité départementale – Bruno Sido Liste UMPDVD Sièges obtenus 23 2 Opposition départementale – MoDem Liste PSDVGPCFPRG Sièges obtenus 10 3 Président du Conseil général Sortant Élu Bruno Sido UMP Bruno Sido UMP modifier - modifier le code - voir Wikidata Les éle...
Halaman ini sedang dipersiapkan dan dikembangkan sehingga mungkin terjadi perubahan besar.Anda dapat membantu dalam penyuntingan halaman ini. Halaman ini terakhir disunting oleh Wagino Bot (Kontrib • Log) 118 hari 869 menit lalu. Jika Anda melihat halaman ini tidak disunting dalam beberapa hari, mohon hapus templat ini. Lihat pula: Daftar tokoh Betawi Daftar tokoh Daerah Khusus Jakarta dibawah ini memuat nama tokoh-tokoh yang lahir di Jakarta, tidak hanya memuat tokoh dari Betawi. Isi dafta...
Questa voce o sezione sull'argomento giochi è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Caravaggio, I bari, 1594 ca. Il gioco d'azzardo...
Road in Malaysia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pasir Gudang Highway – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and when to remove this message) Federal Route 17Pasir Gudang HighwayRoute informationLength30.4 km (18.9 mi)Existed1977–presentHisto...
Irish diplomat, activist, nationalist and poet (1864–1916) Roger CasementCasement by Sarah Purser, 1914BornRoger David Casement(1864-09-01)1 September 1864Sandycove, Dublin, IrelandDied3 August 1916(1916-08-03) (aged 51)Pentonville Prison, London, EnglandCause of deathExecution by hangingMonuments Casement Monument at Ballyheigue Beach Roger Casement Statue at Dún Laoghaire Baths Occupation(s)Diplomat, poet, humanitarian activistOrganisation(s)British Foreign Office, Irish Volunt...
Italian sprinter Eleonora MarchiandoEleonora Marchiando on the 4×400 m relay Istanbul 2023 podiumPersonal informationNationalityItalianBorn (1997-09-27) 27 September 1997 (age 26)Aosta, Italy[1]SportSportAthleticsEvent(s)400 m400 m hsClubAtletica Sandro Calvesi C.S. CarabinieriCoached byEddy Ottoz[1]Achievements and titlesPersonal best 400 m hs: 55.16 (2021) Medal record Women's athletics Representing Italy European Indoor Championships 2023 Istanbul 4×400 m relay...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
مؤسسة الدراسات الفلسطينية الاختصار (بالإنجليزية: IPS) البلد لبنان المقر الرئيسي بيروت تاريخ التأسيس 1963 الموقع الرسمي الموقع الرسمي الإحداثيات 33°53′12″N 35°29′08″E / 33.886694444444°N 35.485555555556°E / 33.886694444444; 35.485555555556 تعديل مصدري - تعديل مؤسسة الدراسات الفل...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Binibining Pilipinas 2023Tanggal2023TempatSmart Araneta Coliseum, Quezon City, Metro Manila, Filipina.Peserta40Finalis/Semifinalis25PemenangAngelica Lopez(Palawan)← 2021lbs Binibining Pilipinas 2023 akan menjadi edisi ke-59 dari Binibining ...
1945 massacre of Polish POWs Podgaje memorial The Podgaje massacre refers to the mass murder of Polish People's Armies POWs, who were captured in January 1945 by the Waffen SS. The massacre took place in the village of Podgaje during the night of 31 January, during which approximately 160–210 POWs of the 4th Company, 3rd Infantry Regiment, of the 1st Tadeusz Kościuszko Infantry Division were executed. The murders were most likely committed by the 48th Dutch SS Grenadier regiment and/or the...
Television program on weekdeys on Sky News Australia Not to be confused with The Morning Show (TV program). The Morning ShiftGenreNews, Political analysis, commentaryPresented byTom Connell (2017)Laura Jayes (2017–present)Country of originAustraliaOriginal languageEnglishNo. of seasons1ProductionRunning time2.5 hours (inc. adverts)Original releaseNetworkSky News AustraliaRelease30 January (2017-01-30) –27 October 2017 (2017-10-27) The Morning Shift is an Australian morning ...
School in Kolkata, West Bengal, IndiaRamakrishna Mission Mandir, NarendrapurLocationKolkata, West BengalIndiaCoordinates22°26′38″N 88°23′41″E / 22.443850°N 88.394700°E / 22.443850; 88.394700InformationTypeResidential Boys Medium - English & BengaliMottoAtmano mokshartham jagat hitaya cha(आत्मनो मोक्षार्थं जगद्धिताय च)(For one’s own salvation and for the welfare of the world)Established1958Headmaster...
Palazzo MezzanottePalazzo MezzanotteLocalizzazioneStato Italia LocalitàMilano Indirizzopiazza degli Affari, 6 Coordinate45°27′54.73″N 9°10′59.88″E45°27′54.73″N, 9°10′59.88″E Informazioni generaliCondizioniIn uso Costruzione1929-1932 Inaugurazioneottobre 1932 StileNovecento RealizzazioneArchitettoPaolo Mezzanotte IngegnereVittorio Mezzanotte AppaltatoreBorsa di Milano ProprietarioBorsa di Milano Modifica dati su Wikidata · Manuale Il Palazzo Mezzanotte, o Palazz...
محمية الحائر للأراضي الرطبة البلد السعودية تعديل مصدري - تعديل محمية الحائر للأراضي الرطبة محمية طبيعية في منطقة الرياض. تقع جنوب الحاير جنوب مدينة الرياض، بمساحة تبلغ 40 كم2، وتحتوي على سد الحائر الذي يصب فيه وادي حنيفة وهو وادٍ طبيعي تنبع به المياه الجوفية. وتحتوي �...