In mathematics, the constant sheaf on a topological space associated to a set is a sheaf of sets on whose stalks are all equal to . It is denoted by or . The constant presheaf with value is the presheaf that assigns to each open subset of the value , and all of whose restriction maps are the identity map . The constant sheaf associated to is the sheafification of the constant presheaf associated to . This sheaf identifies with the sheaf of locally constant -valued functions on .[1]
Let be a topological space, and a set. The sections of the constant sheaf over an open set may be interpreted as the continuous functions , where is given the discrete topology. If is connected, then these locally constant functions are constant. If is the unique map to the one-point space and is considered as a sheaf on , then the inverse image is the constant sheaf on . The sheaf space of is the projection map (where is given the discrete topology).
A detailed example
Let be the topological space consisting of two points and with the discrete topology. has four open sets: . The five non-trivial inclusions of the open sets of are shown in the chart.
A presheaf on chooses a set for each of the four open sets of and a restriction map for each of the inclusions (with identity map for ). The constant presheaf with value , denoted , is the presheaf where all four sets are , the integers, and all restriction maps are the identity. is a functor on the diagram of inclusions (a presheaf), because it is constant. It satisfies the gluing axiom, but is not a sheaf because it fails the local identity axiom on the empty set. This is because the empty set is covered by the empty family of sets, , and vacuously, any two sections in are equal when restricted to any set in the empty family . The local identity axiom would therefore imply that any two sections in are equal, which is false.
To modify this into a presheaf that satisfies the local identity axiom, let , a one-element set, and give the value on all non-empty sets. For each inclusion of open sets, let the restriction be the unique map to 0 if the smaller set is empty, or the identity map otherwise. Note that is forced by the local identity axiom.
Now is a separated presheaf (satisfies local identity), but unlike it fails the gluing axiom. Indeed, is disconnected, covered by non-intersecting open sets and . Choose distinct sections in over and respectively. Because and restrict to the same element 0 over , the gluing axiom would guarantee the existence of a unique section on that restricts to on and on ; but the restriction maps are the identity, giving , which is false. Intuitively, is too small to carry information about both connected components and .
Modifying further to satisfy the gluing axiom, let
,
the -valued functions on , and define the restriction maps of to be natural restriction of functions to and , with the zero map restricting to . Then is a sheaf, called the constant sheaf on with value . Since all restriction maps are ring homomorphisms, is a sheaf of commutative rings.