Relativistic angular momentum

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation. Also, in the same way momentum conservation corresponds to translational symmetry, angular momentum conservation corresponds to rotational symmetry – the connection between symmetries and conservation laws is made by Noether's theorem. While these concepts were originally discovered in classical mechanics, they are also true and significant in special and general relativity. In terms of abstract algebra, the invariance of angular momentum, four-momentum, and other symmetries in spacetime, are described by the Lorentz group, or more generally the Poincaré group.

Physical quantities that remain separate in classical physics are naturally combined in SR and GR by enforcing the postulates of relativity. Most notably, the space and time coordinates combine into the four-position, and energy and momentum combine into the four-momentum. The components of these four-vectors depend on the frame of reference used, and change under Lorentz transformations to other inertial frames or accelerated frames.

Relativistic angular momentum is less obvious. The classical definition of angular momentum is the cross product of position x with momentum p to obtain a pseudovector x × p, or alternatively as the exterior product to obtain a second order antisymmetric tensor xp. What does this combine with, if anything? There is another vector quantity not often discussed – it is the time-varying moment of mass polar-vector (not the moment of inertia) related to the boost of the centre of mass of the system, and this combines with the classical angular momentum pseudovector to form an antisymmetric tensor of second order, in exactly the same way as the electric field polar-vector combines with the magnetic field pseudovector to form the electromagnetic field antisymmetric tensor. For rotating mass–energy distributions (such as gyroscopes, planets, stars, and black holes) instead of point-like particles, the angular momentum tensor is expressed in terms of the stress–energy tensor of the rotating object.

In special relativity alone, in the rest frame of a spinning object, there is an intrinsic angular momentum analogous to the "spin" in quantum mechanics and relativistic quantum mechanics, although for an extended body rather than a point particle. In relativistic quantum mechanics, elementary particles have spin and this is an additional contribution to the orbital angular momentum operator, yielding the total angular momentum tensor operator. In any case, the intrinsic "spin" addition to the orbital angular momentum of an object can be expressed in terms of the Pauli–Lubanski pseudovector.[1]

Definitions

The 3-angular momentum as a bivector (plane element) and axial vector, of a particle of mass m with instantaneous 3-position x and 3-momentum p.

Orbital 3d angular momentum

For reference and background, two closely related forms of angular momentum are given.

In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (px, py, pz), is defined as the axial vector which has three components, that are systematically given by cyclic permutations of Cartesian directions (e.g. change x to y, y to z, z to x, repeat)

A related definition is to conceive orbital angular momentum as a plane element. This can be achieved by replacing the cross product by the exterior product in the language of exterior algebra, and angular momentum becomes a contravariant second order antisymmetric tensor[2]

or writing x = (x1, x2, x3) = (x, y, z) and momentum vector p = (p1, p2, p3) = (px, py, pz), the components can be compactly abbreviated in tensor index notation where the indices i and j take the values 1, 2, 3. On the other hand, the components can be systematically displayed fully in a 3 × 3 antisymmetric matrix

This quantity is additive, and for an isolated system, the total angular momentum of a system is conserved.

Dynamic mass moment

In classical mechanics, the three-dimensional quantity for a particle of mass m moving with velocity u[2][3] has the dimensions of mass moment – length multiplied by mass. It is equal to the mass of the particle or system of particles multiplied by the distance from the space origin to the centre of mass (COM) at the time origin (t = 0), as measured in the lab frame. There is no universal symbol, nor even a universal name, for this quantity. Different authors may denote it by other symbols if any (for example μ), may designate other names, and may define N to be the negative of what is used here. The above form has the advantage that it resembles the familiar Galilean transformation for position, which in turn is the non-relativistic boost transformation between inertial frames.

This vector is also additive: for a system of particles, the vector sum is the resultant where the system's centre of mass position and velocity and total mass are respectively

For an isolated system, N is conserved in time, which can be seen by differentiating with respect to time. The angular momentum L is a pseudovector, but N is an "ordinary" (polar) vector, and is therefore invariant under inversion.

The resultant Ntot for a multiparticle system has the physical visualization that, whatever the complicated motion of all the particles are, they move in such a way that the system's COM moves in a straight line. This does not necessarily mean all particles "follow" the COM, nor that all particles all move in almost the same direction simultaneously, only that the collective motion of the particles is constrained in relation to the centre of mass.

In special relativity, if the particle moves with velocity u relative to the lab frame, then where is the Lorentz factor and m is the mass (i.e. the rest mass) of the particle. The corresponding relativistic mass moment in terms of m, u, p, E, in the same lab frame is

The Cartesian components are

Special relativity

Coordinate transformations for a boost in the x direction

Consider a coordinate frame F′ which moves with velocity v = (v, 0, 0) relative to another frame F, along the direction of the coincident xx′ axes. The origins of the two coordinate frames coincide at times t = t′ = 0. The mass–energy E = mc2 and momentum components p = (px, py, pz) of an object, as well as position coordinates x = (x, y, z) and time t in frame F are transformed to E′ = mc2, p′ = (px′, py′, pz′), x′ = (x′, y′, z′), and t in F′ according to the Lorentz transformations

The Lorentz factor here applies to the velocity v, the relative velocity between the frames. This is not necessarily the same as the velocity u of an object.

For the orbital 3-angular momentum L as a pseudovector, we have

Derivation

For the x-component the y-component and z-component

In the second terms of Ly and Lz, the y and z components of the cross product v × N can be inferred by recognizing cyclic permutations of vx = v and vy = vz = 0 with the components of N,

Now, Lx is parallel to the relative velocity v, and the other components Ly and Lz are perpendicular to v. The parallel–perpendicular correspondence can be facilitated by splitting the entire 3-angular momentum pseudovector into components parallel (∥) and perpendicular (⊥) to v, in each frame,

Then the component equations can be collected into the pseudovector equations

Therefore, the components of angular momentum along the direction of motion do not change, while the components perpendicular do change. By contrast to the transformations of space and time, time and the spatial coordinates change along the direction of motion, while those perpendicular do not.

These transformations are true for all v, not just for motion along the xx′ axes.

Considering L as a tensor, we get a similar result where

The boost of the dynamic mass moment along the x direction is

Derivation

For the x-component the y-component and z-component

Collecting parallel and perpendicular components as before

Again, the components parallel to the direction of relative motion do not change, those perpendicular do change.

Vector transformations for a boost in any direction

So far these are only the parallel and perpendicular decompositions of the vectors. The transformations on the full vectors can be constructed from them as follows (throughout here L is a pseudovector for concreteness and compatibility with vector algebra).

Introduce a unit vector in the direction of v, given by n = v/v. The parallel components are given by the vector projection of L or N into n while the perpendicular component by vector rejection of L or N from n and the transformations are or reinstating v = vn,

These are very similar to the Lorentz transformations of the electric field E and magnetic field B, see Classical electromagnetism and special relativity.

Alternatively, starting from the vector Lorentz transformations of time, space, energy, and momentum, for a boost with velocity v, inserting these into the definitions gives the transformations.

Derivation of vector transformations directly

The orbital angular momentum in each frame are so taking the cross product of the transformations

Using the triple product rule gives and along with the definition of N we have

Reinstating the unit vector n,

Since in the transformation there is a cross product on the left with n, then

4d angular momentum as a bivector

In relativistic mechanics, the COM boost and orbital 3-space angular momentum of a rotating object are combined into a four-dimensional bivector in terms of the four-position X and the four-momentum P of the object[4][5]

In components which are six independent quantities altogether. Since the components of X and P are frame-dependent, so is M. Three components are those of the familiar classical 3-space orbital angular momentum, and the other three are the relativistic mass moment, multiplied by c. The tensor is antisymmetric;

The components of the tensor can be systematically displayed as a matrix in which the last array is a block matrix formed by treating N as a row vector which matrix transposes to the column vector NT, and xp as a 3 × 3 antisymmetric matrix. The lines are merely inserted to show where the blocks are.

Again, this tensor is additive: the total angular momentum of a system is the sum of the angular momentum tensors for each constituent of the system:

Each of the six components forms a conserved quantity when aggregated with the corresponding components for other objects and fields.

The angular momentum tensor M is indeed a tensor, the components change according to a Lorentz transformation matrix Λ, as illustrated in the usual way by tensor index notation where, for a boost (without rotations) with normalized velocity β = v/c, the Lorentz transformation matrix elements are and the covariant βi and contravariant βi components of β are the same since these are just parameters.

In other words, one can Lorentz-transform the four position and four momentum separately, and then antisymmetrize those newly found components to obtain the angular momentum tensor in the new frame.

Vector transformations derived from the tensor transformations

The transformation of boost components are

as for the orbital angular momentum

The expressions in the Lorentz transformation entries are gives or in vector form, dividing by c or reinstating β = v/c, and or converting to pseudovector form in vector notation or reinstating β = v/c,

Rigid body rotation

For a particle moving in a curve, the cross product of its angular velocity ω (a pseudovector) and position x give its tangential velocity

which cannot exceed a magnitude of c, since in SR the translational velocity of any massive object cannot exceed the speed of light c. Mathematically this constraint is 0 ≤ |u| < c, the vertical bars denote the magnitude of the vector. If the angle between ω and x is θ (assumed to be nonzero, otherwise u would be zero corresponding to no motion at all), then |u| = |ω| |x| sin θ and the angular velocity is restricted by

The maximum angular velocity of any massive object therefore depends on the size of the object. For a given |x|, the minimum upper limit occurs when ω and x are perpendicular, so that θ = π/2 and sin θ = 1.

For a rotating rigid body rotating with an angular velocity ω, the u is tangential velocity at a point x inside the object. For every point in the object, there is a maximum angular velocity.

The angular velocity (pseudovector) is related to the angular momentum (pseudovector) through the moment of inertia tensor I (the dot · denotes tensor contraction on one index). The relativistic angular momentum is also limited by the size of the object.

Spin in special relativity

Four-spin

A particle may have a "built-in" angular momentum independent of its motion, called spin and denoted s. It is a 3d pseudovector like orbital angular momentum L.

The spin has a corresponding spin magnetic moment, so if the particle is subject to interactions (like electromagnetic fields or spin-orbit coupling), the direction of the particle's spin vector will change, but its magnitude will be constant.

The extension to special relativity is straightforward.[6] For some lab frame F, let F′ be the rest frame of the particle and suppose the particle moves with constant 3-velocity u. Then F′ is boosted with the same velocity and the Lorentz transformations apply as usual; it is more convenient to use β = u/c. As a four-vector in special relativity, the four-spin S generally takes the usual form of a four-vector with a timelike component st and spatial components s, in the lab frame although in the rest frame of the particle, it is defined so the timelike component is zero and the spatial components are those of particle's actual spin vector, in the notation here s′, so in the particle's frame

Equating norms leads to the invariant relation so if the magnitude of spin is given in the rest frame of the particle and lab frame of an observer, the magnitude of the timelike component st is given in the lab frame also.

Vector transformations derived from the tensor transformations

The boosted components of the four spin relative to the lab frame are

Here γ = γ(u). S′ is in the rest frame of the particle, so its timelike component is zero, S0 = 0, not S0. Also, the first is equivalent to the inner product of the four-velocity (divided by c) and the four-spin. Combining these facts leads to which is an invariant. Then this combined with the transformation on the timelike component leads to the perceived component in the lab frame;

The inverse relations are

The covariant constraint on the spin is orthogonality to the velocity vector,

In 3-vector notation for explicitness, the transformations are

The inverse relations are the components of spin the lab frame, calculated from those in the particle's rest frame. Although the spin of the particle is constant for a given particle, it appears to be different in the lab frame.

The Pauli–Lubanski pseudovector

The Pauli–Lubanski pseudovector applies to both massive and massless particles.

Spin–orbital decomposition

In general, the total angular momentum tensor splits into an orbital component and a spin component, This applies to a particle, a mass–energy–momentum distribution, or field.

Angular momentum of a mass–energy–momentum distribution

Angular momentum from the mass–energy–momentum tensor

The following is a summary from MTW.[7] Throughout for simplicity, Cartesian coordinates are assumed. In special and general relativity, a distribution of mass–energy–momentum, e.g. a fluid, or a star, is described by the stress–energy tensor Tβγ (a second order tensor field depending on space and time). Since T00 is the energy density, Tj0 for j = 1, 2, 3 is the jth component of the object's 3d momentum per unit volume, and Tij form components of the stress tensor including shear and normal stresses, the orbital angular momentum density about the position 4-vector Xβ is given by a 3rd order tensor

This is antisymmetric in α and β. In special and general relativity, T is a symmetric tensor, but in other contexts (e.g., quantum field theory), it may not be.

Let Ω be a region of 4d spacetime. The boundary is a 3d spacetime hypersurface ("spacetime surface volume" as opposed to "spatial surface area"), denoted ∂Ω where "∂" means "boundary". Integrating the angular momentum density over a 3d spacetime hypersurface yields the angular momentum tensor about X, where dΣγ is the volume 1-form playing the role of a unit vector normal to a 2d surface in ordinary 3d Euclidean space. The integral is taken over the coordinates X, not X. The integral within a spacelike surface of constant time is which collectively form the angular momentum tensor.

Angular momentum about the centre of mass

There is an intrinsic angular momentum in the centre-of-mass frame, in other words, the angular momentum about any event on the wordline of the object's center of mass. Since T00 is the energy density of the object, the spatial coordinates of the center of mass are given by

Setting Y = XCOM obtains the orbital angular momentum density about the centre-of-mass of the object.

Angular momentum conservation

The conservation of energy–momentum is given in differential form by the continuity equation where ∂γ is the four-gradient. (In non-Cartesian coordinates and general relativity this would be replaced by the covariant derivative). The total angular momentum conservation is given by another continuity equation

The integral equations use Gauss' theorem in spacetime

Torque in special relativity

The torque acting on a point-like particle is defined as the derivative of the angular momentum tensor given above with respect to proper time:[8][9] or in tensor components: where F is the 4d force acting on the particle at the event X. As with angular momentum, torque is additive, so for an extended object one sums or integrates over the distribution of mass.

Angular momentum as the generator of spacetime boosts and rotations

The angular momentum tensor is the generator of boosts and rotations for the Lorentz group.[10][11] Lorentz boosts can be parametrized by rapidity, and a 3d unit vector n pointing in the direction of the boost, which combine into the "rapidity vector" where β = v/c is the speed of the relative motion divided by the speed of light. Spatial rotations can be parametrized by the axis–angle representation, the angle θ and a unit vector a pointing in the direction of the axis, which combine into an "axis-angle vector"

Each unit vector only has two independent components, the third is determined from the unit magnitude. Altogether there are six parameters of the Lorentz group; three for rotations and three for boosts. The (homogeneous) Lorentz group is 6-dimensional.

The boost generators K and rotation generators J can be combined into one generator for Lorentz transformations; M the antisymmetric angular momentum tensor, with components and correspondingly, the boost and rotation parameters are collected into another antisymmetric four-dimensional matrix ω, with entries: where the summation convention over the repeated indices i, j, k has been used to prevent clumsy summation signs. The general Lorentz transformation is then given by the matrix exponential and the summation convention has been applied to the repeated matrix indices α and β.

The general Lorentz transformation Λ is the transformation law for any four vector A = (A0, A1, A2, A3), giving the components of this same 4-vector in another inertial frame of reference

The angular momentum tensor forms 6 of the 10 generators of the Poincaré group, the other four are the components of the four-momentum for spacetime translations.

Angular momentum in general relativity

The angular momentum of test particles in a gently curved background is more complicated in GR but can be generalized in a straightforward manner. If the Lagrangian is expressed with respect to angular variables as the generalized coordinates, then the angular momenta are the functional derivatives of the Lagrangian with respect to the angular velocities. Referred to Cartesian coordinates, these are typically given by the off-diagonal shear terms of the spacelike part of the stress–energy tensor. If the spacetime supports a Killing vector field tangent to a circle, then the angular momentum about the axis is conserved.

One also wishes to study the effect of a compact, rotating mass on its surrounding spacetime. The prototype solution is of the Kerr metric, which describes the spacetime around an axially symmetric black hole. It is obviously impossible to draw a point on the event horizon of a Kerr black hole and watch it circle around. However, the solution does support a constant of the system that acts mathematically similarly to an angular momentum.

See also

References

  1. ^ D.S.A. Freed; K.K.A. Uhlenbeck (1995). Geometry and quantum field theory (2nd ed.). Institute For Advanced Study (Princeton, N.J.): American Mathematical Society. ISBN 0-8218-8683-5.
  2. ^ a b R. Penrose (2005). The Road to Reality. vintage books. p. 433. ISBN 978-0-09-944068-0. Penrose includes a factor of 2 in the wedge product, other authors may also.
  3. ^ M. Fayngold (2008). Special Relativity and How it Works. John Wiley & Sons. p. 138. ISBN 978-3-527-40607-4.
  4. ^ R. Penrose (2005). The Road to Reality. vintage books. pp. 437–438, 566–569. ISBN 978-0-09-944068-0. Note: Some authors, including Penrose, use Latin letters in this definition, even though it is conventional to use Greek indices for vectors and tensors in spacetime.
  5. ^ M. Fayngold (2008). Special Relativity and How it Works. John Wiley & Sons. pp. 137–139. ISBN 978-3-527-40607-4.
  6. ^ Jackson, J. D. (1975) [1962]. "Chapter 11". Classical Electrodynamics (2nd ed.). John Wiley & Sons. pp. 556–557. ISBN 0-471-43132-X. Jackson's notation: S (spin in F, lab frame), s (spin in F′, rest frame of particle), S0 (timelike component in lab frame), S′0 = 0 (timelike component in rest frame of particle), no symbol for 4-spin as a 4-vector
  7. ^ J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. pp. 156–159, §5.11. ISBN 0-7167-0344-0.
  8. ^ S. Aranoff (1969). "Torque and angular momentum on a system at equilibrium in special relativity". American Journal of Physics. 37 (4): 453–454. Bibcode:1969AmJPh..37..453A. doi:10.1119/1.1975612. This author uses T for torque, here we use capital Gamma Γ since T is most often reserved for the stress–energy tensor.
  9. ^ S. Aranoff (1972). "Equilibrium in special relativity" (PDF). Nuovo Cimento. 10 (1): 159. Bibcode:1972NCimB..10..155A. doi:10.1007/BF02911417. S2CID 117291369. Archived from the original (PDF) on 2012-03-28. Retrieved 2013-10-27.
  10. ^ E. Abers (2004). Quantum Mechanics. Addison Wesley. pp. 11, 104, 105, 410–411. ISBN 978-0-13-146100-0.
  11. ^ H.L. Berk; K. Chaicherdsakul; T. Udagawa (2001). "The Proper Homogeneous Lorentz Transformation Operator eL = eω·Sξ·K, Where's It Going, What's the Twist" (PDF). American Journal of Physics. 69 (996). doi:10.1119/1.1371919.

Further reading

Special relativity

General relativity

Read other articles:

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Hamzah Sulaeman – berita · surat kabar · buku · cendekiawan · JSTOR Hamzah SulaemanHamzah membawa kaos bergambar kartun RamintenLahirHamzah SulaemanPekerjaankomedian, marketing Hamzah Sulaeman adalah seorang ...

 

 

For the Starr County community, see Mesquite, Starr County, Texas. City in Texas, United StatesMesquite, TexasCityTop to bottom, left to right: AMC 30 Mesquite, Stephen Decatur Lawrence Farmstead, Mesquite Memorial Stadium, Mesquite Metro Airport hangar, Mesquite High School, and Mesquite TowerNickname: Rodeo Capital of TexasMotto: Real. Texas. Flavor.Location within and around Dallas CountyMesquiteLocation within TexasShow map of TexasMesquiteMesquite (the United States)Show map o...

 

 

Peta infrastruktur dan tata guna lahan di Komune Ramecourt.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiRamecourt merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ame...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Poncey–Highland – news · newspapers · books · scholar · JSTOR (October 2017) (Learn how and when to remove this template message) Neighborhoods of Atlanta in Fulton County, Georgia, United StatesPoncey–HighlandNeighborhoods of AtlantaCorner of North Avenue ...

 

 

У Вікіпедії є статті про інші значення цього терміна: 1064 (значення). Рік: 1061 · 1062 · 1063 — 1064 — 1065 · 1066 · 1067 Десятиліття: 1040-ві · 1050-ті — 1060-ті — 1070-ті · 1080-ті Століття: IX · X —  XI — XII · XIII Тисячоліття: 1-ше — 2-ге — 3-тє 1064 в інших календарях�...

 

 

Forest City, JohorPinggiran Iskandar PuteriLuas • Total3 km2 (1 sq mi)Populasi[1] • Total9.000 • Kepadatan3,0/km2 (7,8/sq mi)Situs webforestcity.my/en Forest City adalah pengembangan perumahan terintegrasi dan kota pribadi yang berlokasi di Iskandar Puteri, Johor, Malaysia. Pertama kali diumumkan pada tahun 2006 sebagai proyek investasi dua puluh tahun yang sebagian besar dibiayai oleh konsorsium pengembang real estat swasta Tion...

Abbot and theologian (died after 700) This article is about the abbot. For the patriarch, see Anastasius I of Antioch. SaintAnastasius SinaitaIcon of St. Anastasius, Church of Panagia Theotokos, Vouliagmenis AvenueChurch FatherBornAlexandriaDiedafter 700Venerated inRoman Catholic Church,Eastern Orthodox ChurchFeastApril 21 Anastasius Sinaita (Greek: Ἀναστάσιος ὁ Σιναΐτης; died after 700), also called Anastasius of Sinai or Anastasius the Sinaite, was a Greek writer, ...

 

 

English cricketer and footballer Leslie GayPersonal informationFull nameLeslie Hewitt GayBorn(1871-03-24)24 March 1871Brighton, Sussex, EnglandDied1 November 1949(1949-11-01) (aged 78)[1]Sidmouth, Devon, EnglandHeight5 ft 11 in (1.80 m)BattingRight-handedRoleWicket-keeperRelationsCharlotte Evelyn Gay (sister)Kingsmill Key (cousin)International information National sideEnglandOnly Test (cap 91)14 December 1894 v Australia Domestic team inform...

 

 

1915 film (biography of Edgar Allan Poe) directed by Charles Brabin The RavenScene from the filmDirected byCharles BrabinWritten byCharles Brabin (scenario)Based onThe Raven: The Love Story of Edgar Allan Poeby George C. HazeltonStarringHenry B. WalthallErnest MaupainWarda HowardMarion SkinnerHarry DunkinsonProductioncompanyEssanay Film Manufacturing CompanyDistributed byV-L-S-E, IncorporatedRelease date November 8, 1915 (1915-11-08) Running time80 minutesCountryUnited StatesLa...

Language family For the North Maluku regency, see North Halmahera Regency. North HalmaheraHalmaheranGeographicdistributionMaluku Islands, IndonesiaLinguistic classificationWest Papuan or independent language familyNorth HalmaheraGlottolognort2923Map of the North Halmahera languages. The North Halmahera (NH) languages are a family of languages spoken in the northern and eastern parts of the island of Halmahera and some neighboring islands in Indonesia. The southwestern part of the island is oc...

 

 

Pour les articles homonymes, voir Wedel (homonymie). Wilhelm von Wedel-Piesdorf Photographie de Wilhelm von Wedel-Piesdorf. Fonctions Ministre de la Maison royale de Prusse 1888 – 1907(19 ans) Monarque Guillaume II Prédécesseur Otto zu Stolberg-Wernigerode Successeur August zu Eulenburg Président de la Chambre des seigneurs de Prusse 1912 – 11 juillet 1915(3 ans) Prédécesseur Otto von Manteuffel Successeur Dietlof von Arnim-Boitzenburg Président du Reichstag novembre 1881...

 

 

Effective annexation of East Jerusalem by Israel in 1967 Part of a series onJerusalem History Timeline City of David Second Temple Period Aelia Capitolina Middle Ages Early Muslim period Kingdom of Jerusalem Mutasarrifate British Mandate Israeli takeover of West Jerusalem Jordanian annexation of East Jerusalem Israeli annexation of East Jerusalem Sieges Before Common Era 701 BCE 597 BCE 587 BCE 63 BCE 37 BCE Common Era 70 614 637 1099 1187 1244 1834 1917 1948 Places East West Old City Temple ...

American actress (d. 2020) Ja'Net DuBoisDuBois as Willona Woods on the television series Good Times, 1976BornJeannette Theresa DuboisAugust 5Brooklyn, New York, U.S.or Philadelphia, Pennsylvania, U.S.Died(2020-02-17)February 17, 2020Glendale, California, U.S.OccupationsActresssingerYears active1960–2019Known forWillona Woods – Good Times Ma Bell – I'm Gonna Git You Sucka Ms. Avery – The PJsSpouse(s)Sajit Gupta(m. 1950–?; divorced)Children4 Jeannette Theresa Dubois (August ...

 

 

American Civil War battle This article is about the American Civil War battle and campaign. For the 18th century Cherokee actions, see Cherokee–American wars. Battle of ChickamaugaPart of the Western Theater of the American Civil WarDateSeptember 18–20, 1863[1][2]LocationCatoosa and Walker counties, Georgia34°55′03″N 85°15′38″W / 34.9176°N 85.2606°W / 34.9176; -85.2606Result Confederate victory[3]Belligerents  United States ...

 

 

Film festival 2014 Cannes Film FestivalOfficial poster of the 67th Cannes Film Festival featuring a photo of Marcello Mastroianni from Federico Fellini's 1963 film 8½Opening filmGrace of MonacoClosing filmA Fistful of DollarsLocationCannes, FranceFounded1946AwardsPalme d'Or: Winter SleepHosted byLambert WilsonNo. of films18 (In Competition)20 (Un Certain Regard)9 (Short Film)Festival date14 – 25 May 2014Websitefestival-cannes.com/enCannes Film Festival2015 2013 The 67th Cannes Film Festiva...

Fictional video game character Fictional character Pyramid HeadSilent Hill characterPyramid Head as he appears in Silent Hill 2First appearanceSilent Hill 2Designed byMasahiro ItoPortrayed byRoberto Campanella Pyramid Head, also known as Red Pyramid, Red Pyramid Thing (赤い三角頭, Akai Sankakutō),[1] or Triangle Head (三角頭, Sankaku Atama) is a character from the Silent Hill series, a survival horror video game series created by Japanese company Konami. Introduced in the 200...

 

 

Voce principale: Ballspielverein Borussia 09 Dortmund. Ballspielverein Borussia 09 DortmundStagione 1972-1973Sport calcio Squadra Borussia Dortmund Allenatore Herbert Burdenski (1ª-24ª) Detlev Brüggemann (25ª-34ª) Regionalliga4º posto Ovest DFB-LigapokalGironi StadioStadio Rote Erde 1971-1972 1973-1974 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Ballspielverein Borussia 09 Dortmund nelle competizioni ufficiali della stagione 1972-197...

 

 

Richard O'BrienO'Brien pada tahun 2006LahirRichard Timothy Smith25 Maret 1942 (umur 82)[1]Cheltenham, Gloucestershire, England, UKPekerjaanAktor, pengarang, penyiar, aktor suara, pemain teaterPeriode1965–sekarangGenreCult filmKarya terkenalThe Rocky Horror Show (penulis and aktor)The Crystal Maze (pembawa acara)PasanganKimi Wong (m. 1971–?, cerai)Jane Moss (m. 1983–2006, cerai)Anak3Websitehttp://www.rockyhorror.com Richard Timothy Smith (lahir 25 Maret 1942), yang lebi...

Diocese of the Episcopal Church in the United States Diocese of Western MichiganDiœcesis Michiganensis OccidentalisLocationCountryUnited StatesTerritoryThe Michigan counties of Allegan, Antrim, Barry, Benzie, Berrien, Branch, Calhoun, Cass, Charlevoix, Clare, Eaton, Emmet, Grand Traverse, Ionia, Isabella, Kalamazoo, Kalkaska, Kent, Lake, Leelanau, Manistee, Mason, Mecosta, Missaukee, Montcalm, Muskegon, Mewaygo, Oceana, Osceola, Ottawa, St. Joseph, Van Buren, and WexfordEcclesiastical provin...

 

 

Prime Minister of the Yugoslav government-in-exile during World War II For other uses, see Slobodan Jovanović (disambiguation). Slobodan JovanovićPortrait of Slobodan Jovanovićby Uroš Predić, 193115th Prime Minister of Yugoslavia (government-in-exile)In office11 January 1942 – 26 June 1943Preceded byDušan SimovićSucceeded byMiloš Trifunović Personal detailsBorn(1869-12-03)3 December 1869Újvidék, Austria-Hungary(now Novi Sad, Serbia)Died12 December 1958(1958-12-12) (aged ...