Curved space

Curved space often refers to a spatial geometry which is not "flat", where a flat space has zero curvature, as described by Euclidean geometry.[1] Curved spaces can generally be described by Riemannian geometry, though some simple cases can be described in other ways. Curved spaces play an essential role in general relativity, where gravity is often visualized as curved spacetime.[2] The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe.[citation needed] The fact that photons have no mass yet are distorted by gravity, means that the explanation would have to be something besides photonic mass. Hence, the belief that large bodies curve space and so light, traveling on the curved space will, appear as being subject to gravity. It is not, but it is subject to the curvature of space.

Simple two-dimensional example

A very familiar example of a curved space is the surface of a sphere. While to our familiar outlook the sphere looks three-dimensional, if an object is constrained to lie on the surface, it only has two dimensions that it can move in. The surface of a sphere can be completely described by two dimensions, since no matter how rough the surface may appear to be, it is still only a surface, which is the two-dimensional outside border of a volume. Even the surface of the Earth, which is fractal in complexity, is still only a two-dimensional boundary along the outside of a volume.[3]

Embedding

In a flat space, the sum of the squares of the side of a right-angled triangle is equal to the square of the hypotenuse. This relationship does not hold for curved spaces.

One of the defining characteristics of a curved space is its departure from the Pythagorean theorem.[citation needed] In a curved space

.

The Pythagorean relationship can often be restored by describing the space with an extra dimension. Suppose we have a three-dimensional non-Euclidean space with coordinates . Because it is not flat

.

But if we now describe the three-dimensional space with four dimensions () we can choose coordinates such that

.

Note that the coordinate is not the same as the coordinate .

For the choice of the 4D coordinates to be valid descriptors of the original 3D space it must have the same number of degrees of freedom. Since four coordinates have four degrees of freedom it must have a constraint placed on it. We can choose a constraint such that Pythagorean theorem holds in the new 4D space. That is

.

The constant can be positive or negative. For convenience we can choose the constant to be

where now is positive and .

We can now use this constraint to eliminate the artificial fourth coordinate . The differential of the constraining equation is

leading to .

Plugging into the original equation gives

.

This form is usually not particularly appealing and so a coordinate transform is often applied: , , . With this coordinate transformation

.

Without embedding

The geometry of a n-dimensional space can also be described with Riemannian geometry. An isotropic and homogeneous space can be described by the metric:

.

This reduces to Euclidean space when . But a space can be said to be "flat" when the Weyl tensor has all zero components. In three dimensions this condition is met when the Ricci tensor () is equal to the metric times the Ricci scalar (, not to be confused with the R of the previous section). That is . Calculation of these components from the metric gives that

where .

This gives the metric:

.

where can be zero, positive, or negative and is not limited to ±1.

Open, flat, closed

An isotropic and homogeneous space can be described by the metric:[citation needed]

.

In the limit that the constant of curvature () becomes infinitely large, a flat, Euclidean space is returned. It is essentially the same as setting to zero. If is not zero the space is not Euclidean. When the space is said to be closed or elliptic. When the space is said to be open or hyperbolic.

Triangles which lie on the surface of an open space will have a sum of angles which is less than 180°. Triangles which lie on the surface of a closed space will have a sum of angles which is greater than 180°. The volume, however, is not .

See also

References

  1. ^ "The Feynman Lectures on Physics Vol. II Ch. 42: Curved Space". www.feynmanlectures.caltech.edu. Retrieved 2024-01-18.
  2. ^ "Curved Space". www.math.brown.edu. Retrieved 2024-01-18.
  3. ^ "Curved Space - Special and General Relativity - The Physics of the Universe". www.physicsoftheuniverse.com. Retrieved 2024-01-18.

Further reading

Read other articles:

Le Chant des WallonsB. Indonesia: Lagu Orang WalloniaLagu kebangsaan WalloniaPenulis lirikThéophile Bovy, 1900KomponisLouis Hillier, 1901Penggunaan1998 Le Chant des Wallons (Lagu Orang Wallonia) adalah lagu kebangsaan Wallonia di Belgia. Lirik aslinya ditulis dalam bahasa Walloon oleh Théophile Bovy pada tahun 1900. Kemudian, lirik tersebut dijadikan musik oleh Louis Hillier pada tahun 1901. Setelah pertama kali diperdengarkan di kota Liège, lagu ini dengan cepat menyebar ke wilayah W...

 

Cinema ofJapan List of Japanese films Pre-1910 1910s 1920s 1930s 1940s 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 20142015 2016 2017 2018 2019 2020s 2020 2021 2022 2023 2024 2025 vte ...

 

Disambiguazione – Se stai cercando altri significati, vedi Serie A 1952-1953 (disambigua). Serie A 1952-1953 Competizione Serie A Sport Calcio Edizione 51ª (21ª di Serie A) Organizzatore Lega Nazionale Date dal 14 settembre 1952al 31 maggio 1953 Luogo  Italia Partecipanti 18 Formula girone unico Risultati Vincitore Inter(6º titolo) Retrocessioni ComoPro Patria Statistiche Miglior marcatore Gunnar Nordahl (26) Incontri disputati 306 Gol segnati 830 (2,71 per incont...

Perdana Menteri FilipinaPunong Ministro ng PilipinasLambangPendahuluJabatan dirikan (pra-1899)Presiden Filipina (1978)Dibentuk2 Januari 1899 (pembuatan ke-1)12 Juni 1978 (pembuatan ke-2)Pejabat pertamaApolinario Mabini y MarananPejabat terakhirSalvador H. LaurelJabatan dihapus13 November 1899 (peniadaan ke-1)25 Maret 1986 (peniadaan ke-2)SuksesiPresiden Filipina (1899–1978; 1986) Perdana Menteri Filipina (Filipino: Punong Ministro ng Pilipinascode: fil is deprecated ) adalah sebuah jabatan ...

 

خريطة مركز قويسنا. مركز قويسنا، هو مركز تابع لمحافظة المنوفية في جمهورية مصر العربية. قاعدته الإدارية مدينة قويسنا.[1] جغرافيا يقع مركز قويسنا في أقصى جنوب شرق المحافظة، ويبلغ مساحته 203.9 كم مربع، أي 8.02% من جملة مساحة المحافظة.[2] التقسيم الإداري يضم المركز سبع وحدات م�...

 

1939 film by John Ford This article is about the 1939 film. For the statue, see Young Abe Lincoln. For the 1940 film, see Abe Lincoln in Illinois (film). For the play, see Abe Lincoln in Illinois (play). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourc...

Lutheran college in Kenosha, Wisconsin, U.S. Carthage CollegeFormer namesThe Literary and Theological Institute of the Lutheran Church in the Far WestLutheran CollegeHillsboro CollegeIllinois State University (1852–1870)MottoSeeking truth. Building strength. Inspiring service. Together.[1]TypePrivate collegeEstablishedJanuary 22, 1847; 177 years ago (1847-01-22)Religious affiliationEvangelical Lutheran Church in AmericaAcademic affiliationSpace-grant[2]Endo...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Sungai ArrosCiri-ciri fisikMuara sungaiAdourPanjang131 kmLuas DASDAS: 947 km² Arros, merupakan anak sungai kanan Adour, di Baratdaya Prancis. Nama Nama Arros didasarkan pada akar kata Arr- ('batu') dan akhiran -os. Geografi Arros bermuara di Baronnies...

 

Polymerisation of glucose molecules into glycogen Not to be confused with Glycolysis, Glycogenolysis, or Gluconeogenesis. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Glycogenesis – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this template message) Glycogenesis i...

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

 

Le prix Wolf d'agriculture est remis annuellement par la fondation Wolf, en Israël. C'est l'un des six prix Wolf remis depuis 1978, les autres étant ceux en médecine, mathématiques, physique, chimie et art. Liste des lauréats 1978 : George F. Sprague et John Charles Walker États-Unis 1979 : Jay L. Lush États-Unis et Sir Kenneth Blaxter Royaume-Uni 1980 : Karl Maramorosch États-Unis 1981 : John O. Almquist, Henry A. Lardy et Glenn W. Sallsbury États-Unis 1982 ...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

Mildred Davis LloydDavis pada 1921Lahir(1901-02-22)22 Februari 1901Philadelphia, Pennsylvania, A.S.Meninggal18 Agustus 1969(1969-08-18) (umur 68)Santa Monica, California, A.S.KebangsaanAmerikaAlmamaterFriends SchoolPekerjaanAktrisTahun aktif1916–1949Suami/istriHarold Lloyd ​(m. 1923)​Anak3, termasuk Harold Lloyd Jr. Mildred Hillary Davis[1] (22 Februari 1901 – 18 Agustus 1969)[note 1][2] adalah seorang aktris Am...

 

Área metropolitana Coordenadas 34°44′10″N 92°19′52″O / 34.7361, -92.3311Ciudad más poblada Little RockEntidad Área metropolitana • País Estados Unidos • Estado  Arkansas • Condados  -Faulkner  -Grant  -Lonoke -Perry  -Saline • Ciudades principales  -Little Rock - North Little Rock -ConwaySuperficie   • Total 10,390 km²Población (2010) Puesto 74.º • Total 2,134,411...

此條目没有列出任何参考或来源。 (2013年10月29日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 乌巴伊Ubaí市镇乌巴伊在巴西的位置坐标:16°17′06″S 44°46′40″W / 16.285°S 44.7778°W / -16.285; -44.7778国家巴西州米纳斯吉拉斯州面积 • 总计821.872 平方公里(317.327 平方�...

 

2018 single by WinnerMillionsDigital coverSingle by WinnerReleasedDecember 19, 2018 (2018-12-19)Genre Dance pop Length3:29Label YG Genie Music Composer(s)YoonKang Uk-jinDiggyLyricist(s)YoonMinoHoonyWinner singles chronology Everyday (2018) Millions (2018) Ah Yeah (2019) Music videoMillions on YouTube Millions is a song recorded by South Korean boy group Winner. It was released on December 19, 2018 under the label YG Entertainment and is distributed by Genie Music.[1] ...

 

بلدة ساوبل الإحداثيات 44°01′57″N 85°58′36″W / 44.0325°N 85.976666666667°W / 44.0325; -85.976666666667   [1] تقسيم إداري  البلد الولايات المتحدة  التقسيم الأعلى مقاطعة ليك  خصائص جغرافية  المساحة 35.4 ميل مربع  ارتفاع 229 متر  عدد السكان  عدد السكان 373 (1 أبريل 2020)[2] ...

إليس     الإحداثيات 38°56′10″N 99°33′33″W / 38.9361°N 99.5592°W / 38.9361; -99.5592   [1] تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة إيليس  خصائص جغرافية  المساحة 4.256959 كيلومتر مربع4.256961 كيلومتر مربع (1 أبريل 2010)  ارتفاع 646 متر  عدد �...

 

Etymological encyclopedia compiled by Isidore of Seville Etymologiae Page of Etymologiae, Carolingian manuscript (8th century) – Royal Library of Belgium, BrusselsAuthorIsidore of SevilleLanguageLate LatinSubjectGeneral knowledgeetymologyGenreEncyclopaediaPublication datec. 625Pages20 booksOriginal textEtymologiae at Latin Wikisource Etymologiae (Latin for 'Etymologies'), also known as the Origines ('Origins'), usually abbreviated Orig., is an etymological encyclopedia compiled by the...