Two-dimensional space

Euclidean space has parallel lines which extend infinitely while remaining equidistant. In non-Euclidean spaces, lines perpendicular to a traversal either converge or diverge.

A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensional spaces are often called planes, or, more generally, surfaces. These include analogs to physical spaces, like flat planes, and curved surfaces like spheres, cylinders, and cones, which can be infinite or finite. Some two-dimensional mathematical spaces are not used to represent physical positions, like an affine plane or complex plane.

Flat

The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured. The space is flat because any two lines transversed by a third line perpendicular to both of them are parallel, meaning they never intersect and stay at uniform distance from each-other.

Curved

Two-dimensional spaces can also be curved, for example the sphere and hyperbolic plane, sufficiently small portions of which appear like the flat plane, but on which straight lines which are locally parallel do not stay equidistant from each-other but eventually converge or diverge, respectively. Two-dimensional spaces with a locally Euclidean concept of distance but which can have non-uniform curvature are called Riemannian surfaces. (Not to be confused with Riemann surfaces.) Some surfaces are embedded in three-dimensional Euclidean space or some other ambient space, and inherit their structure from it; for example, ruled surfaces such as the cylinder and cone contain a straight line through each point, and minimal surfaces locally minimize their area, as is done physically by soap films.

Relativistic

Lorentzian surfaces look locally like a two-dimensional slice of relativistic spacetime with one spatial and one time dimension; constant-curvature examples are the flat Lorentzian plane (a two-dimensional subspace of Minkowski space) and the curved de Sitter and anti-de Sitter planes.

Non-Euclidean

Other types of mathematical planes and surfaces modify or do away with the structures defining the Euclidean plane. For example, the affine plane has a notion of parallel lines but no notion of distance; however, signed areas can be meaningfully compared, as they can in a more general symplectic surface. The projective plane does away with both distance and parallelism. A two-dimensional metric space has some concept of distance but it need not match the Euclidean version. A topological surface can be stretched, twisted, or bent without changing its essential properties. An algebraic surface is a two-dimensional set of solutions of a system of polynomial equations.

Information-holding

Some mathematical spaces have additional arithmetical structure associated with their points. A vector plane is an affine plane whose points, called vectors, include a special designated origin or zero vector. Vectors can be added together or scaled by a number, and optionally have a Euclidean, Lorentzian, or Galilean concept of distance. The complex plane, hyperbolic number plane, and dual number plane each have points which are considered numbers themselves, and can be added and multiplied. A Riemann surface or Lorentz surface appear locally like the complex plane or hyperbolic number plane, respectively.

Definition and meaning

Mathematical spaces are often defined or represented using numbers rather than geometric axioms. One of the most fundamental two-dimensional spaces is the real coordinate space, denoted consisting of pairs of real-number coordinates. Sometimes the space represents arbitrary quantities rather than geometric positions, as in the parameter space of a mathematical model or the configuration space of a physical system.

Non-real numbers

More generally, other types of numbers can be used as coordinates. The complex plane is two-dimensional when considered to be formed from real-number coordinates, but one-dimensional in terms of complex-number coordinates. A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates. Some two-dimensional spaces, such as finite planes, have only a finite set of elements.

Further reading

  • Hartshorne, Robin (2000). Geometry: Euclid and Beyond. Springer. doi:10.1007/978-0-387-22676-7. ISBN 0-387-98650-2.
  • Kinsey, Laura Christine (1993). Topology of Surfaces. Springer. doi:10.1007/978-1-4612-0899-0. ISBN 0-387-94102-9.
  • Needham, Tristan (2021). Visual Differential Geometry and Forms. Princeton. ISBN 0-691-20370-9.
  • Stillwell, John (1992). Geometry of Surfaces. Springer. doi:10.1007/978-1-4612-0929-4. ISBN 0-387-97743-0.
  • Yaglom, Isaak Moiseevich (1968) [1963]. Complex Numbers in Geometry. Translated by Primrose, Eric J. F. Academic Press. LCCN 66-26269.

Read other articles:

1967 studio album by Lee MorganDelightfuleeStudio album by Lee MorganReleasedEarly November 1967[1]RecordedApril 8 & May 27, 1966StudioVan Gelder Studio, Englewood Cliffs, NJGenreJazzLength38:29 original LP68:00 CD reissueLabelBlue NoteBST 84243ProducerAlfred LionLee Morgan chronology Infinity(1965) Delightfulee(1967) Charisma(1966) Delightfulee is an album by jazz trumpeter Lee Morgan released on the Blue Note label in 1967. It was recorded on April 8 & May 27, 1966 a...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) رون دانتي   معلومات شخصية اسم الولادة (بالإنجليزية: Carmine John Granito)‏  الميلاد 22 أغسطس 1945 (78 سنة)[1]  جزيرة ستاتن  مواطنة الولايات المتحدة  الحياة ال

Ізмаїльський прикордонний загін 17 прикордонний загін імені полковника Олександра Жуковського Емблема Ізмаїльського загонуНа службі 28 травня 1945Країна  УкраїнаВид  Прикордонна службаУ складі Південне РУГарнізон/Штаб 68600, Одеська обл., м. Ізмаїл, вул. Г. Музиченка,...

F.C. BarcelonaDatos generalesNombre completo Fútbol Club BarcelonaApodo(s) Azulgranas, Blaugranas, Culés, BarçaDeporte VoleibolFundación 01 de enero de 1970 (53 años)Presidente Carlos Tusquets (interino)Entrenador Fredinson Mosquera MosqueraInstalacionesEstadio cubierto Parc Esportiu LlobregatCornellá de Llobregat, Cataluña, EspañaCapacidad 2.500 espectadoresInauguración 9 de enero de 2006 (17 años)Uniforme Última temporadaLiga Superliga Masculina de Voleibol2020-2021 12�...

أوكوز محمد باشا   معلومات شخصية الميلاد سنة 1557  إسطنبول  الوفاة سنة 1619 (61–62 سنة)  القسطنطينية  مواطنة الدولة العثمانية  الزوجة جوهرخان سلطان  مناصب والي مصر   في المنصب1607  – 1611  حسن باشا اليمني  محمد باشا الصوفي الرازغرادي  الصدر الأعظم   في

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Delores M. Etter – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this template message) Delores M. Ett...

New Zealand politician Robert HoustonMember of the New Zealand Parliamentfor Bay of IslandsIn office5 December 1890 – 17 November 1908Preceded byRichard HobbsSucceeded byVernon Reed Personal detailsBorn1842County Down, IrelandDied27 September 1912Mangonui, New ZealandPolitical partyLiberalSpouseChristina Stewart Robert Morrow Houston (1842 – 27 September 1912) was a Liberal Party Member of Parliament in New Zealand. Early life New Zealand Parliament Years Term Electorate Party 18...

1976 studio album by The AbyssiniansSatta MassaganaStudio album by The AbyssiniansReleasedOriginal: 1976Reissues: 1977, 1993, 2007Recorded1975-76StudioHarry J. Studio & Joe Gibbs Studio, Kingston, JamaicaGenreReggaeLength33:58LabelJam Sounds, HeartbeatProducerThe AbyssiniansThe Abyssinians chronology Satta Massagana(1976) Arise(1978) Alternative coversForward On To Zion cover Alternative coverOriginal Heartbeat cover from 1993 Professional ratingsReview scoresSourceRatingAllmusic&...

State University in Bihar This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Babasaheb Bhimrao Ambedkar Bihar University – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) Babasaheb Bhimrao Ambedkar Bihar UniversityTypePublicEstablished1960 (63...

The Gymnastic Society was an eighteenth-century London sports club for the pursuit of football and wrestling. It is arguably the first football club. Background The club was established in London by gentlemen from Westmorland and Cumberland in the north of England for the practice and cultivation of their favourite sports. Football Regular football games were played at the Kennington common on the south side of the river Thames, in what was formerly Surrey and close to The Oval where a centur...

Sporting event delegationQatar at theOlympicsIOC codeQATNOCQatar Olympic CommitteeWebsitewww.olympic.qa/en (in English and Arabic)Medals Gold 0 Silver 1 Bronze 4 Total 5 Summer appearances19841988199219962000200420082012201620202024 This is a list of flag bearers who have represented Qatar at the Olympics.[1] Flag bearers carry the national flag of their country at the opening ceremony of the Olympic Games. # Event year Season Flag bearer Sport 8 2020 Summer Tala AbujbaraMohammed...

AkuntansiKonsep dasarAkuntan · Pembukuan · Neraca percobaan · Buku besar · Debit dan kredit · Harga pokok · Pembukuan berpasangan · Standar praktik · Basis kas dan akrual · PABU / IFRSBidang akuntansiBiaya · Dana · Forensik · Keuangan · Manajemen · PajakLaporan keuanganNeraca · Laba rugi · Perubahan ekuitas · ...

This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (July 2018) (Learn how and when to remove this template message) Weather radar of Lahore, located on Jail Road. Lahore features a five-season semi-arid climate (Köppen climate classification BSh), closely bordering a humid subtropical climate, with five seasons: foggy winter (10 Dec – 1 Feb) with few western disturbances causing rain; pleasant...

For other people named José Treviño, see José Treviño (disambiguation). In this Spanish name, the first or paternal surname is Treviño and the second or maternal family name is Morales. José Treviño MoralesTreviño Morales after winning competition.Occupation(s)Money laundering, horse racing, horse breedingEmployerLos ZetasSpouseZulema TreviñoRelativesMiguel Treviño Morales (Brother) Omar Treviño Morales (Brother) José Treviño Morales is a Mexican former money launderer fo...

1989 single by Mia MartiniAlmeno tu nell'universoSingle by Mia Martinifrom the album Martini Mia B-sideSpegni la testaReleased1989Recorded1989GenrePopLength5:05Composer(s)Maurizio FabrizioLyricist(s)Bruno LauziMia Martini singles chronology Spaccami il cuore (1985) Almeno tu nell'universo (1989) La nevicata del '56 (1990) Almeno tu nell'universo (Italian pronunciation: [alˈmeːno ˈtu nnelluniˈvɛrso]; transl. At least you in the [whole] universe) is a song written by Bruno La...

In this Korean name, the family name is Kim. Korean independence activist (1891–1944) Maria KimKim in 1919Born(1891-06-18)June 18, 1891Changyon County, South Hwanghae Province, JoseonDiedMarch 13, 1944(1944-03-13) (aged 52)Pyongyang, Japanese KoreaKnown forKorean independence activistKorean nameHangul김마리아Hanja金瑪利亞Revised RomanizationGim MariaMcCune–ReischauerKim Maria Maria Kim (June 18, 1891 – March 13, 1944) was a Korean independence activist during the perio...

Indian politician (1924–1988) Karpoori ThakurKarpoori Thakur, 1991 stamp of India11th Chief Minister of BiharIn office22 December 1970 – 2 June 1971Preceded byDaroga Prasad RaiSucceeded byBhola Paswan ShashtriIn office24 June 1977 – 21 April 1979Preceded byJagannath MishraSucceeded byRam Sunder Das2 nd Deputy Chief Minister of BiharIn office5 March 1967 – 31 January 1968Chief MinisterMahamaya Prasad SinhaPreceded byAnugrah Narayan SinhaSucceeded bySushil...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 沖縄労働局 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2014年2月) 沖縄労働局Okinawa Labour Bureau 沖縄労働局(那覇�...

Encyclopaedia Metallum de Morrigan, Hellblazer www.Metal-Archives.comGénero ReferenciaTema(s) Base de datos, grupos de heavy metalIdioma InglésTítulo original Encyclopaedia MetallumPaís  CanadáFecha de publicación julio de 2002Formato Enciclopedia en línea[editar datos en Wikidata] Encyclopaedia Metallum: The Metal Archives (más conocida como Metal Archives o MA) es una enciclopedia en línea que relaciona bandas musicales vinculadas al heavy metal en todas sus var...

Cette liste est incomplète ou mal ordonnée. Votre aide est la bienvenue ! Cet article recense les reliefs, sommets et lacs d'origine volcanique, ainsi que les volcans inactifs et potentiellement actifs de France. Liste France métropolitaine Massif central Volcans d'Auvergne Bouche Fourchat Mont Redon Pisuissy Puy d'Alou Puy d'Aoust Puy d'Auzelle Puy d'Éraigne Puy d'Olloix Puy de Berzet Puy de Conche Puy de Fan Puy de Gourdon Puy de Marquerolle Puy de Mazeyres Puy de Montredon Somme M...