Algebraic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold.

The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old.

Classification by the Kodaira dimension

In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus and the geometric genus because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for each kind of surface refers to each redirection), follows:

Examples of algebraic surfaces include (κ is the Kodaira dimension):

For more examples see the list of algebraic surfaces.

The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The Cartesian product of two curves also provides examples.

Birational geometry of surfaces

The birational geometry of algebraic surfaces is rich, because of blowing up (also known as a monoidal transformation), under which a point is replaced by the curve of all limiting tangent directions coming into it (a projective line). Certain curves may also be blown down, but there is a restriction (self-intersection number must be −1).

Castelnuovo's Theorem

One of the fundamental theorems for the birational geometry of surfaces is Castelnuovo's theorem. This states that any birational map between algebraic surfaces is given by a finite sequence of blowups and blowdowns.

Properties

The Nakai criterion says that:

A Divisor D on a surface S is ample if and only if D2 > 0 and for all irreducible curve C on S D•C > 0.

Ample divisors have a nice property such as it is the pullback of some hyperplane bundle of projective space, whose properties are very well known. Let be the abelian group consisting of all the divisors on S. Then due to the intersection theorem

is viewed as a quadratic form. Let

then becomes to be a numerical equivalent class group of S and

also becomes to be a quadratic form on , where is the image of a divisor D on S. (In the below the image is abbreviated with D.)

For an ample line bundle H on S, the definition

is used in the surface version of the Hodge index theorem:

for , i.e. the restriction of the intersection form to is a negative definite quadratic form.

This theorem is proven using the Nakai criterion and the Riemann-Roch theorem for surfaces. The Hodge index theorem is used in Deligne's proof of the Weil conjecture.

Basic results on algebraic surfaces include the Hodge index theorem, and the division into five groups of birational equivalence classes called the classification of algebraic surfaces. The general type class, of Kodaira dimension 2, is very large (degree 5 or larger for a non-singular surface in P3 lies in it, for example).

There are essential three Hodge number invariants of a surface. Of those, h1,0 was classically called the irregularity and denoted by q; and h2,0 was called the geometric genus pg. The third, h1,1, is not a birational invariant, because blowing up can add whole curves, with classes in H1,1. It is known that Hodge cycles are algebraic and that algebraic equivalence coincides with homological equivalence, so that h1,1 is an upper bound for ρ, the rank of the Néron-Severi group. The arithmetic genus pa is the difference

geometric genus − irregularity.

This explains why the irregularity got its name, as a kind of 'error term'.

Riemann-Roch theorem for surfaces

The Riemann-Roch theorem for surfaces was first formulated by Max Noether. The families of curves on surfaces can be classified, in a sense, and give rise to much of their interesting geometry.

References

  • Dolgachev, I.V. (2001) [1994], "Algebraic surface", Encyclopedia of Mathematics, EMS Press
  • Zariski, Oscar (1995), Algebraic surfaces, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-58658-6, MR 1336146

Read other articles:

Will Rogers (1922) William Penn Adair Rogers (4 November 1879 – 15 Agustus 1935) adalah seorang koboi, pelawak, komentator sosial, pemain sandiwara vaudeville dan aktor Amerika Serikat. Ia adalah anak kesayangan Oklahoma,[1] Rogers lahir di keluarga Indian yang penting dan belajar mengendarai kuda dan menggunakan lariat di mana ia masuk kedalam Guinness Book of World Records untuk melempar 3 tali yang ketiganya menangkap leher kuda.[2][3] dan menjadi figur yang terke...

 

Hybrid UniverseAlbum studio karya Nana MizukiDirilis3 Mei 2006 (2006-05-03)GenreJ-PopDurasi66:45Bahasa Bahasa JepangLabelKing RecordsKronologi Nana Mizuki Alive & Kicking(2004)Alive & Kicking2004 Hybrid Universe(2006) The Museum (2007)The Museum2007 Singel dalam album Hybrid Universe WILD EYESDirilis: 18 Mei 2005 ETERNAL BLAZEDirilis: 19 Oktober 2005 SUPER GENERATIONDirilis: 18 Januari 2006 Hybrid Universe adalah album kelima oleh penyanyi wanita dan seiyu asal Jepang, Nana M...

 

American hip-hop duo City MorgueSosMula (left) and ZillaKamiBackground informationOriginNew York City, New York, U.S.Genres Punk rap trap metal nu metal hardcore hip hop Years active2016-Present [1]LabelsHikari-UltraRepublic[2]Members ZillaKami SosMula Websitecitymorgueofficial.com City Morgue is an American hip hop duo from New York City which consists of rappers ZillaKami (Junius Rogers) and SosMula (Vinicius Sosa). History SosMula in 2020 Prior to the formation of City Morg...

Tanda tempelan beraneka bahasa dalam bahasa Arab, bahasa Ibrani, bahasa Inggris dan bahasa Rusia yang bertempat di kantor Kementerian Dalam Negeri Israel dan Kementerian Penyerapan Penduduk Perantau Israel di kota Haifa. Tanda peringatan beraneka bahasa dalam bahasa Arab, Ibrani, Inggris dan Rusia pada penutup lubang got berserat optik di tempat kedudukan pusat pemerintahan negara Israel, kota Tel Aviv. Papan penunjuk jalan di Israel yang tercantum dalam bahasa Arab, bahasa Ibrani dan bahasa ...

 

Giovan Battista Bolognini, incisione di Luigi Crespi (1769) Giovan Battista Bolognini (Bologna, 28 agosto 1612 – Bologna, 2 novembre 1688) è stato un pittore e incisore italiano. Indice 1 Biografia 2 Note 3 Altri progetti 4 Collegamenti esterni Biografia Fu allievo di Guido Reni, di cui tradusse numerosi quadri in incisioni all'acquaforte. Fu in rapporto con i duchi di Mantova e Guastalla e con l'inquisitore di Bologna: nelle chiese di Bologna si conservano numerosi suoi dipinti come Sant'...

 

Indra Gumay Fitri Waaskomlek Panglima TNIPetahanaMulai menjabat 29 September 2022PendahuluZakariaPenggantiPetahana Informasi pribadiLahir6 November 1972 (umur 51)IndonesiaKebangsaanIndonesiaAlma materAkademi Militer (1994)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1994—SekarangPangkat Brigadir Jenderal TNISatuanCorps Komunikasi & Elektronika (CKE)Sunting kotak info • L • B Brigadir Jenderal TNI Indra Gumay Fitri (lahir 6 Novemb...

Literary journal in India (1920) The Muslim Bharat (Bengali: মোসলেম ভারত) was a historic literary journal that published from Kolkata in the early 20th century. It published works by notable Bengali authors and poets; such as Abanindranath Tagore, Kalidas Roy, Kaikobad, Qazi Imdadul Haq, Kazi Abdul Wadud, Kumud Ranjan Mullick, Mohitlal Majumdar, Mohammad Barkatullah, Satyendranath Dutta, Sheikh Fazlul Karim, and Syed Emdad Ali.[1][2][3] History The...

 

For similar named locales, see Salt Well, Alabama and Saltwell, Tyne and Wear. Brine Wells near Preesall, England Brine wellhead near Preesall, England A salt well (or brine well) is used to mine salt from caverns or deposits. Water is used as a solution to dissolve the salt or halite deposits so that they can be extracted by pipe to an evaporation process, which results in either a brine or a dry product for sale or local use.[1] In the United States during the 19th century, salt wel...

 

Group of institutions dedicated to music in Paris, France The Cité de la Musique in Paris The Cité de la Musique (City of Music), also known as Philharmonie 2, is a group of institutions dedicated to music and situated in the Parc de la Villette, 19th arrondissement of Paris, France. It was designed with the nearby Conservatoire de Paris (CNSMDP) by the architect Christian de Portzamparc and opened in 1995. Part of François Mitterrand's Grands Projets, the Cité de la Musique reinvented La...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

This article needs to be updated. The reason given is: The station is now part of the IR Ishikawa Railway. Please help update this article to reflect recent events or newly available information. (March 2024) Railway station in Hakusan, Ishikawa Prefecture, Japan This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Komaiko Station – news · newspape...

Mrs. FiskeMrs. Fiske: Love Finds the Way.Foto karya Zaida Ben-Yusuf (1896)LahirMarie Augusta Davey(1865-12-19)19 Desember 1865New Orleans, LouisianaMeninggal15 Februari 1932(1932-02-15) (umur 66)Hollis, Long Island, New YorkNama lainMinnie Maddern FiskePekerjaanAktris, pengarang dramaSuami/istriLeGrand White (m. 1882 - 25 Juni 1888) Harrison Grey Fiske (m. 19 Maret 1890 - 1932; kematiannya) Minnie Maddern Fiske (19 Desember 1865 – 15 Februari 1932), yang lahir denga...

 

Artikel ini bukan mengenai Liberalisme konservatif atau Konservatisme libertarian. Halaman ini berisi artikel tentang filsafat politik. Untuk partai politik Kanada, lihat Partai Liberal-Konservatif. Bagian dari seriKonservatisme Varian Budaya Fiskal Hijau Liberal Libertarian Nasional Neo- Kanan Baru Satu bangsa Paleo- Agama Sosial Tradisionalis Konsep Konformitas Tradisi Norma sosial Familisme Tatanan sosial Patriotisme Hierarki sosial Hukum statuta Properti pribadi Proteksionisme Tokoh Edmun...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. HIGHTEENAsalSeoul, Korea SelatanLabelIllusion Entertainment HIGHTEEN (하이틴; juga ditulis sebagai HighTeen) adalah sebuah grup vokal perempuan Korea Selatan empat anggota di bawah kontrak Illusion Entertainment.[1][2][3] Mer...

Rugby playerJustin HarrisonDate of birth (1974-04-20) 20 April 1974 (age 50)Place of birthSydney, AustraliaHeight2.01 m (6 ft 7 in)Weight113 kg (17 st 11 lb)UniversitySouthern Cross University, Lismore1997–2001 University of CanberraRugby union careerPosition(s) LockCurrent team Brumbies (Forwards Coach)Senior careerYears Team Apps (Points)2005–08 Ulster Rugby 72 (10)2008–09 Bath Rugby 30 (0)2011–13 RC Narbonne 20 (0) Correct as of 29 March 202...

 

Layer of cells that covers leaves, flowers, roots of plants For other uses, see Epidermis. Cross-section of a flax plant stem: pithprotoxylemxylemphloemsclerenchyma (bast fibre)cortexepidermis The epidermis (from the Greek ἐπιδερμίς, meaning over-skin) is a single layer of cells that covers the leaves, flowers, roots and stems of plants. It forms a boundary between the plant and the external environment. The epidermis serves several functions: it protects against water loss, regulat...

 

Fresville L'église Saint-Martin. Administration Pays France Région Normandie Département Manche Arrondissement Cherbourg Intercommunalité Communauté d'agglomération du Cotentin Maire Mandat Jocelyne Levavasseur 2020-2026 Code postal 50310 Code commune 50194 Démographie Gentilé Fresvillais Populationmunicipale 374 hab. (2021 ) Densité 27 hab./km2 Géographie Coordonnées 49° 26′ 23″ nord, 1° 21′ 22″ ouest Altitude Min. 1 mMax. 36...

Benedictine monastery in England The Norman Tower, a gateway and bell tower in front of the new cathedral tower The Abbey ruins, Bury St Edmunds The Abbey of Bury St Edmunds was once among the richest Benedictine monasteries in England, until its dissolution in 1539. It is in the town that grew up around it, Bury St Edmunds in the county of Suffolk, England. It was a centre of pilgrimage as the burial place of the Anglo-Saxon martyr-king Saint Edmund, killed by the Great Heathen Army of Danes...

 

Honoré MuraireHonoré Muraire, comte de l'Empire, né le 5 novembre 1750 à Draguignan, Joseph Eymar (1750-1830) d'après Madame Harriet, musée national des châteaux de Malmaison et de Bois-PréauFonctionDéputé françaisTitre de noblesseComteBiographieNaissance 5 novembre 1750DraguignanDécès 20 novembre 1837 (à 87 ans)ParisNationalité françaiseActivités Homme politique, jugeAutres informationsDistinctions Grand officier de la Légion d'honneur‎Chevalier Grand Croix de l'ordr...