Enriques–Kodaira classification

In mathematics, the Enriques–Kodaira classification groups compact complex surfaces into ten classes, each parametrized by a moduli space. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known.

Max Noether began the systematic study of algebraic surfaces, and Guido Castelnuovo proved important parts of the classification. Federigo Enriques (1914, 1949) described the classification of complex projective surfaces. Kunihiko Kodaira (1964, 1966, 1968a, 1968b) later extended the classification to include non-algebraic compact surfaces. The analogous classification of surfaces in positive characteristic was begun by David Mumford (1969) and completed by Enrico Bombieri and David Mumford (1976, 1977); it is similar to the characteristic 0 projective case, except that one also gets singular and supersingular Enriques surfaces in characteristic 2, and quasi-hyperelliptic surfaces in characteristics 2 and 3.

Statement of the classification

Chern numbers of minimal complex surfaces

The Enriques–Kodaira classification of compact complex surfaces states that every nonsingular minimal compact complex surface is of exactly one of the 10 types listed on this page; in other words, it is one of the rational, ruled (genus > 0), type VII, K3, Enriques, Kodaira, toric, hyperelliptic, properly quasi-elliptic, or general type surfaces.

For the 9 classes of surfaces other than general type, there is a fairly complete description of what all the surfaces look like (which for class VII depends on the global spherical shell conjecture, still unproved in 2024). For surfaces of general type not much is known about their explicit classification, though many examples have been found.

The classification of algebraic surfaces in positive characteristic (Mumford 1969, Mumford & Bombieri 1976, 1977) is similar to that of algebraic surfaces in characteristic 0, except that there are no Kodaira surfaces or surfaces of type VII, and there are some extra families of Enriques surfaces in characteristic 2, and hyperelliptic surfaces in characteristics 2 and 3, and in Kodaira dimension 1 in characteristics 2 and 3 one also allows quasielliptic fibrations. These extra families can be understood as follows: In characteristic 0 these surfaces are the quotients of surfaces by finite groups, but in finite characteristics it is also possible to take quotients by finite group schemes that are not étale.

Oscar Zariski constructed some surfaces in positive characteristic that are unirational but not rational, derived from inseparable extensions (Zariski surfaces). In positive characteristic Serre showed that may differ from , and Igusa showed that even when they are equal they may be greater than the irregularity (the dimension of the Picard variety).

Invariants of surfaces

Hodge numbers and Kodaira dimension

The most important invariants of a compact complex surfaces used in the classification can be given in terms of the dimensions of various coherent sheaf cohomology groups. The basic ones are the plurigenera and the Hodge numbers defined as follows:

  • are called the plurigenera. They are birational invariants, i.e., invariant under blowing up. Using Seiberg–Witten theory, Robert Friedman and John Morgan showed that for complex manifolds they only depend on the underlying oriented smooth 4-manifold. For non-Kähler surfaces the plurigenera are determined by the fundamental group, but for Kähler surfaces there are examples of surfaces that are homeomorphic but have different plurigenera and Kodaira dimensions. The individual plurigenera are not often used; the most important thing about them is their growth rate, measured by the Kodaira dimension.
  • is the Kodaira dimension: it is (sometimes written −1) if the plurigenera are all 0, and is otherwise the smallest number (0, 1, or 2 for surfaces) such that is bounded. Enriques did not use this definition: instead he used the values of and . These determine the Kodaira dimension given the following correspondence:
  • where is the sheaf of holomorphic i-forms, are the Hodge numbers, often arranged in the Hodge diamond:
By Serre duality and The Hodge numbers of a complex surface depend only on the oriented real cohomology ring of the surface, and are invariant under birational transformations except for which increases by 1 under blowing up a single point.
  • If the surface is Kähler then and there are only three independent Hodge numbers.
  • If the surface is compact then equals or

There are many invariants that (at least for complex surfaces) can be written as linear combinations of the Hodge numbers, as follows:

  • Betti numbers: defined by
In characteristic p > 0 the Betti numbers are defined using l-adic cohomology and need not satisfy these relations.
By Noether's formula it is also equal to the Todd genus
  • The signature of the second cohomology group for complex surfaces is denoted by :
  • are the dimensions of the maximal positive and negative definite subspaces of so:
  • c2 = e and are the Chern numbers, defined as the integrals of various polynomials in the Chern classes over the manifold.

Other invariants

There are further invariants of compact complex surfaces that are not used so much in the classification. These include algebraic invariants such as the Picard group Pic(X) of divisors modulo linear equivalence, its quotient the Néron–Severi group NS(X) with rank the Picard number ρ, topological invariants such as the fundamental group π1 and the integral homology and cohomology groups, and invariants of the underlying smooth 4-manifold such as the Seiberg–Witten invariants and Donaldson invariants.

Minimal models and blowing up

Any surface is birational to a non-singular surface, so for most purposes it is enough to classify the non-singular surfaces.

Given any point on a surface, we can form a new surface by blowing up this point, which means roughly that we replace it by a copy of the projective line. For the purpose of this article, a non-singular surface X is called minimal if it cannot be obtained from another non-singular surface by blowing up a point. By Castelnuovo's contraction theorem, this is equivalent to saying that X has no (−1)-curves (smooth rational curves with self-intersection number −1). (In the more modern terminology of the minimal model program, a smooth projective surface X would be called minimal if its canonical line bundle KX is nef. A smooth projective surface has a minimal model in that stronger sense if and only if its Kodaira dimension is nonnegative.)

Every surface X is birational to a minimal non-singular surface, and this minimal non-singular surface is unique if X has Kodaira dimension at least 0 or is not algebraic. Algebraic surfaces of Kodaira dimension may be birational to more than one minimal non-singular surface, but it is easy to describe the relation between these minimal surfaces. For example, P1 × P1 blown up at a point is isomorphic to P2 blown up twice. So to classify all compact complex surfaces up to birational isomorphism it is (more or less) enough to classify the minimal non-singular ones.

Surfaces of Kodaira dimension −∞

Algebraic surfaces of Kodaira dimension can be classified as follows. If q > 0 then the map to the Albanese variety has fibers that are projective lines (if the surface is minimal) so the surface is a ruled surface. If q = 0 this argument does not work as the Albanese variety is a point, but in this case Castelnuovo's theorem implies that the surface is rational.

For non-algebraic surfaces Kodaira found an extra class of surfaces, called type VII, which are still not well understood.

Rational surfaces

Rational surface means surface birational to the complex projective plane P2. These are all algebraic. The minimal rational surfaces are P2 itself and the Hirzebruch surfaces Σn for n = 0 or n ≥ 2. (The Hirzebruch surface Σn is the P1 bundle over P1 associated to the sheaf O(0) + O(n). The surface Σ0 is isomorphic to P1 × P1, and Σ1 is isomorphic to P2 blown up at a point so is not minimal.)

Invariants: The plurigenera are all 0 and the fundamental group is trivial.

Hodge diamond:

1
00
010(Projective plane)
00
1
1
00
020(Hirzebruch surfaces)
00
1

Examples: P2, P1 × P1 = Σ0, Hirzebruch surfaces Σn, quadrics, cubic surfaces, del Pezzo surfaces, Veronese surface. Many of these examples are non-minimal.

Ruled surfaces of genus > 0

Ruled surfaces of genus g have a smooth morphism to a curve of genus g whose fibers are lines P1. They are all algebraic. (The ones of genus 0 are the Hirzebruch surfaces and are rational.) Any ruled surface is birationally equivalent to P1 × C for a unique curve C, so the classification of ruled surfaces up to birational equivalence is essentially the same as the classification of curves. A ruled surface not isomorphic to P1 × P1 has a unique ruling (P1 × P1 has two).

Invariants: The plurigenera are all 0.

Hodge diamond:

1
gg
020
gg
1

Examples: The product of any curve of genus > 0 with P1.

Surfaces of class VII

These surfaces are never algebraic or Kähler. The minimal ones with b2 = 0 have been classified by Bogomolov, and are either Hopf surfaces or Inoue surfaces. Examples with positive second Betti number include Inoue-Hirzebruch surfaces, Enoki surfaces, and more generally Kato surfaces. The global spherical shell conjecture implies that all minimal class VII surfaces with positive second Betti number are Kato surfaces, which would more or less complete the classification of the type VII surfaces.

Invariants: q = 1, h1,0 = 0. All plurigenera are 0.

Hodge diamond:

1
01
0b20
10
1

Surfaces of Kodaira dimension 0

These surfaces are classified by starting with Noether's formula For Kodaira dimension 0, K has zero intersection number with itself, so Using

we arrive at:

Moreover since κ = 0 we have:

combining this with the previous equation gives:

In general 2h0,1b1, so three terms on the left are non-negative integers and there are only a few solutions to this equation.

  • For algebraic surfaces 2h0,1b1 is an even integer between 0 and 2pg.
  • For compact complex surfaces 2h0,1b1 = 0 or 1.
  • For Kähler surfaces 2h0,1b1 = 0 and h1,0 = h0,1.

Most solutions to these conditions correspond to classes of surfaces, as in the following table:

b2 b1 h0,1 pg = h0,2 h1,0 h1,1 Surfaces Fields
22 0 0 1 0 20 K3 Any. Always Kähler over the complex numbers, but need not be algebraic.
10 0 0 0 0 10 Classical Enriques Any. Always algebraic.
10 0 1 1 Non-classical Enriques Only characteristic 2
6 4 2 1 2 4 Abelian surfaces, tori Any. Always Kähler over the complex numbers, but need not be algebraic.
2 2 1 0 1 2 Hyperelliptic Any. Always algebraic
2 2 1 or 2 0 or 1 Quasi-hyperelliptic Only characteristics 2, 3
4 3 2 1 1 2 Primary Kodaira Only complex, never Kähler
0 1 1 0 0 0 Secondary Kodaira Only complex, never Kähler

K3 surfaces

These are the minimal compact complex surfaces of Kodaira dimension 0 with q = 0 and trivial canonical line bundle. They are all Kähler manifolds. All K3 surfaces are diffeomorphic, and their diffeomorphism class is an important example of a smooth spin simply connected 4-manifold.

Invariants: The second cohomology group H2(X, Z) is isomorphic to the unique even unimodular lattice II3,19 of dimension 22 and signature −16.

Hodge diamond:

1
00
1201
00
1

Examples:

  • Degree 4 hypersurfaces in P3(C)
  • Kummer surfaces. These are obtained by quotienting out an abelian surface by the automorphism a → −a, then blowing up the 16 singular points.

A marked K3 surface is a K3 surface together with an isomorphism from II3,19 to H2(X, Z). The moduli space of marked K3 surfaces is connected non-Hausdorff smooth analytic space of dimension 20. The algebraic K3 surfaces form a countable collection of 19-dimensional subvarieties of it.

Abelian surfaces and 2-dimensional complex tori

The two-dimensional complex tori include the abelian surfaces. One-dimensional complex tori are just elliptic curves and are all algebraic, but Riemann discovered that most complex tori of dimension 2 are not algebraic. The algebraic ones are exactly the 2-dimensional abelian varieties. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Criteria to be a product of two elliptic curves (up to isogeny) were a popular study in the nineteenth century.

Invariants: The plurigenera are all 1. The surface is diffeomorphic to S1 × S1 × S1 × S1 so the fundamental group is Z4.

Hodge diamond:

1
22
141
22
1

Examples: A product of two elliptic curves. The Jacobian of a genus 2 curve. Any quotient of C2 by a lattice.

Kodaira surfaces

These are never algebraic, though they have non-constant meromorphic functions. They are usually divided into two subtypes: primary Kodaira surfaces with trivial canonical bundle, and secondary Kodaira surfaces which are quotients of these by finite groups of orders 2, 3, 4, or 6, and which have non-trivial canonical bundles. The secondary Kodaira surfaces have the same relation to primary ones that Enriques surfaces have to K3 surfaces, or bielliptic surfaces have to abelian surfaces.

Invariants: If the surface is the quotient of a primary Kodaira surface by a group of order k = 1, 2, 3, 4, 6, then the plurigenera Pn are 1 if n is divisible by k and 0 otherwise.

Hodge diamond:

1
12
121(Primary)
21
1
1
01
000(Secondary)
10
1

Examples: Take a non-trivial line bundle over an elliptic curve, remove the zero section, then quotient out the fibers by Z acting as multiplication by powers of some complex number z. This gives a primary Kodaira surface.

Enriques surfaces

These are the complex surfaces such that q = 0 and the canonical line bundle is non-trivial, but has trivial square. Enriques surfaces are all algebraic (and therefore Kähler). They are quotients of K3 surfaces by a group of order 2 and their theory is similar to that of algebraic K3 surfaces.

Invariants: The plurigenera Pn are 1 if n is even and 0 if n is odd. The fundamental group has order 2. The second cohomology group H2(X, Z) is isomorphic to the sum of the unique even unimodular lattice II1,9 of dimension 10 and signature −8 and a group of order 2.

Hodge diamond:

1
00
0100
00
1

Marked Enriques surfaces form a connected 10-dimensional family, which has been described explicitly.

In characteristic 2 there are some extra families of Enriques surfaces called singular and supersingular Enriques surfaces; see the article on Enriques surfaces for details.

Hyperelliptic (or bielliptic) surfaces

Over the complex numbers these are quotients of a product of two elliptic curves by a finite group of automorphisms. The finite group can be Z/2Z,  Z/2Z + Z/2Z, Z/3Z,  Z/3Z + Z/3Z,  Z/4Z,  Z/4Z + Z/2Z, or Z/6Z, giving seven families of such surfaces.

Hodge diamond:

1
11
020
11
1

Over fields of characteristics 2 or 3 there are some extra families given by taking quotients by a non-etale group scheme; see the article on hyperelliptic surfaces for details.

Surfaces of Kodaira dimension 1

An elliptic surface is a surface equipped with an elliptic fibration (a surjective holomorphic map to a curve B such that all but finitely many fibers are smooth irreducible curves of genus 1). The generic fiber in such a fibration is a genus 1 curve over the function field of B. Conversely, given a genus 1 curve over the function field of a curve, its relative minimal model is an elliptic surface. Kodaira and others have given a fairly complete description of all elliptic surfaces. In particular, Kodaira gave a complete list of the possible singular fibers. The theory of elliptic surfaces is analogous to the theory of proper regular models of elliptic curves over discrete valuation rings (e.g., the ring of p-adic integers) and Dedekind domains (e.g., the ring of integers of a number field).

In finite characteristic 2 and 3 one can also get quasi-elliptic surfaces, whose fibers may almost all be rational curves with a single node, which are "degenerate elliptic curves".

Every surface of Kodaira dimension 1 is an elliptic surface (or a quasielliptic surface in characteristics 2 or 3), but the converse is not true: an elliptic surface can have Kodaira dimension , 0, or 1. All Enriques surfaces, all hyperelliptic surfaces, all Kodaira surfaces, some K3 surfaces, some abelian surfaces, and some rational surfaces are elliptic surfaces, and these examples have Kodaira dimension less than 1. An elliptic surface whose base curve B is of genus at least 2 always has Kodaira dimension 1, but the Kodaira dimension can be 1 also for some elliptic surfaces with B of genus 0 or 1.

Invariants:

Example: If E is an elliptic curve and B is a curve of genus at least 2, then E×B is an elliptic surface of Kodaira dimension 1.

Surfaces of Kodaira dimension 2 (surfaces of general type)

These are all algebraic, and in some sense most surfaces are in this class. Gieseker showed that there is a coarse moduli scheme for surfaces of general type; this means that for any fixed values of the Chern numbers c2
1
and c2, there is a quasi-projective scheme classifying the surfaces of general type with those Chern numbers. However it is a very difficult problem to describe these schemes explicitly, and there are very few pairs of Chern numbers for which this has been done (except when the scheme is empty!)

Invariants: There are several conditions that the Chern numbers of a minimal complex surface of general type must satisfy:

  • (the Bogomolov–Miyaoka–Yau inequality)
  • (the Noether inequality)

Most pairs of integers satisfying these conditions are the Chern numbers for some complex surface of general type.

Examples: The simplest examples are the product of two curves of genus at least 2, and a hypersurface of degree at least 5 in P3. There are a large number of other constructions known. However, there is no known construction that can produce "typical" surfaces of general type for large Chern numbers; in fact it is not even known if there is any reasonable concept of a "typical" surface of general type. There are many other examples that have been found, including most Hilbert modular surfaces, fake projective planes, Barlow surfaces, and so on.

See also

References

  • le superficie algebriche is an interactive visualisation of the Enriques--Kodaira classification, by Pieter Belmans and Johan Commelin

Read other articles:

Tertulus menghadap Feliks Dalam Alkitab, Tertulus (sebuah modifikasi dari Tertius) adalah seorang ahli hukum, yang dimajukan oleh kaum Yahudi untuk mengadukan aduan mereka terhadap Paulus kepada Feliks (Kis 24:1–9). Ia melaporkan aduan terhadap para rasul Mula-mula, bahwa ia menciptakan ganggungan di kalangan orang Romawi di seluruh kekaisaran, sebuah serangan terhadap pemerintahan Romawi (crimen majestatis). Kedua, bahwa ia adalah pemimpin sekte Nasrani; mengganggu Yahudi atas keberadaan a...

 

Upazila in Chittagong, BangladeshRangamati Sadar রাঙামাটি সদরUpazilaCoordinates: 22°39′N 92°11′E / 22.650°N 92.183°E / 22.650; 92.183Country BangladeshDivisionChittagongDistrictRangamatiJatiya Sangsad constituencyRangamatiGovernment • MPDipankar Talukdar • ChairmanMd. Shahiduzzaman Mohsin RomanArea • Total546.48 km2 (211.00 sq mi)Population (2011) • Total124,728 ...

 

Pour les articles homonymes, voir Électronique. Composants de circuits électroniques. L'électronique est une branche de la physique appliquée, « qui s'intéresse aux phénomènes de conduction électrique et aux équipements associés[1] ». Elle traite « du mouvement des porteurs de charge dans le vide, les gaz et les semiconducteurs, des phénomènes de conduction électrique qui en résultent, et de leurs applications[2] ». On parle d'électronique surtout quand...

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (February 2013) (Learn how and when to remove this template message) This article relies...

 

Pendekar Paul De Thouars[1] Pendekar adalah orang yang memiliki keahlian dalam seni bela diri dan menggunakan keahliannya tersebut untuk membela kebenaran, membela orang lemah dan tertindas, atau menegakkan keadilan dengan menentang sebuah kekuatan penindas.[2] Julukan ini lazim disematkan kepada tokoh protagonis dalam cerita-cerita rakyat Nusantara yang mengusung tema kepahlawanan. Si Pitung dalam cerita rakyat Jakarta, misalnya, kerap disebut sebagai Pendekar Betawi, Pembela...

Pour les articles homonymes, voir Vaughan. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (novembre 2018). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Brian...

 

F-14 Tomcat adalah pesawat pertama yang disebut pesawat tempur superioritas udara. Pesawat tempur superioritas udara adalah tipe pesawat tempur yang dirancang untuk memasuki dan mengontrol langit lawan, dengan tujuan mencapai superioritas udara. Pesawat jenis ini biasanya lebih mahal dan diproduksi dalam jumlah yang lebih sedikit dari pesawat yang tidak memiliki kemampuan ini. Istilah ini dianggap pertama kali dipakai ketika digunakan pada tahun 1960-an untuk mendeskripsikan F-14 Tomcat yang ...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「...

Not to be confused with Ironclad (film). American TV series or program IroncladsPosterWritten byHarold GastDirected byDelbert MannStarringVirginia MadsenAlex Hyde-WhiteE. G. MarshallFritz WeaverPhilip CasnoffReed DiamondTheme music composerAllyn FergusonCountry of originUnited StatesOriginal languageEnglishProductionProducersDavid A. RosemontNorman RosemontCinematographyWilliam WagesEditorMillie MooreRunning time94 minutesProduction companyTurner PicturesOriginal releaseNetworkTurner Broadcas...

 

Green RosePoster promosiGenreLaga Romansa Drama SuspenseDitulis olehYoo Hyun-mi Kim Doo-samSutradaraKim Soo-ryong Kim Jin-geunPemeranGo Soo Lee Da-hae Lee Jong-hyuk Kim Seo-hyungNegara asalKorea SelatanBahasa asliKoreaJmlh. episode22ProduksiProduserKim Young-supDurasi60 menit Sabtu dan Minggu pukul 21:45 (WSK)Rilis asliJaringanSeoul Broadcasting SystemRilis19 Maret (2005-03-19) –29 Mei 2005 (2005-5-29)Acara terkaitGreen Rose Green RoseHangul그린로즈 Alih AksaraGeurinroje...

 

British Army officer initial training centre Royal Military Academy SandhurstNew College buildingsMottoServe to leadTypeMilitary academyEstablished1947 (1947) (merger of Royal Military Academy, founded 1741, and Royal Military College, founded 1801)Parent institutionArmy Recruiting and Initial Training CommandAffiliationBritish ArmyCommandantMajor-General Zachary StenningLocationSandhurst, Berkshire, United KingdomMarchScipio (Slow) British Grenadiers (Quick)ColorsRed, yellow and blueWeb...

Essex-class aircraft carrier of the US Navy For other ships with the same name, see USS Bonhomme Richard. USS Bon Homme Richard underway in 1959 History United States NameBon Homme Richard NamesakeBenjamin Franklin BuilderNew York Naval Shipyard Laid down1 February 1943 Launched29 April 1944 Commissioned26 November 1944 Decommissioned9 January 1947 Recommissioned15 January 1951 Decommissioned15 May 1953 Recommissioned6 September 1955 Decommissioned2 July 1971 ReclassifiedCVA-31, 1 October 195...

 

تحتاج النصوص المترجمة في هذه المقالة إلى مراجعة لضمان معلوماتها وإسنادها وأسلوبها ومصطلحاتها ووضوحها للقارئ، لأنها تشمل ترجمة اقتراضية أو غير سليمة. فضلاً ساهم في تطوير هذه المقالة بمراجعة النصوص وإعادة صياغتها بما يتناسب مع دليل الأسلوب في ويكيبيديا. (أكتوبر 2015)   ه...

 

Period of increased racism in the U.S. Nadir of American race relations1877/1890 – 1901/1923/1941 (disputed)Ku Klux Klan on parade in Springfield, Ohio in 1923.IncludingRed SummerBack-to-Africa movementGreat MigrationChronology Reconstruction era Harlem RenaissanceCivil rights movement Part of a series on theNadir of Americanrace relationsViolence in the 1906 Atlanta race massacre Historical background Reconstruction era Voter suppression Disfranchisement Redeemers Compromise of 18...

Cette liste présente les matchs de l'équipe de Curaçao de football par adversaire rencontré[1],[2]. Lorsqu'une rivalité footballistique particulière existe entre Curaçao et un autre pays, une page spécifique est parfois proposée. Sommaire : Haut – A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Sommaire Antigua-et-Barbuda • Aruba • Barbade • Bolivie • Bonaire • Canada • Colombie • Costa Rica • Cuba • Danemark • États-Unis • Grenade • Guadeloupe •...

 

Study of similarities and differences in the anatomy of different species Comparative anatomy studies similarities and differences in organisms. The image shows homologous bones in the upper limb of various vertebrates. Comparative anatomy is the study of similarities and differences in the anatomy of different species. It is closely related to evolutionary biology and phylogeny[1] (the evolution of species). The science began in the classical era, continuing in the early modern perio...

 

German painter (1845–1921) Friedrich Wilhelm HeineBorn(1845-03-25)March 25, 1845Leipzig, GermanyDiedAugust 27, 1921(1921-08-27) (aged 76)Milwaukee, WisconsinOccupationArtistStyleWatercolor, etching Friedrich Wilhelm Heine (March 25, 1845 – August 27, 1921) was a German-born painter known for his genre works and paintings depicting Norse mythology. He was born in Leipzig, Germany, and died in Milwaukee, Wisconsin.[1] Life Friedrich Wilhelm Heine spent the first forty years of ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ajahn Sao Kantasīlo – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) Phra KhruVivekbuddhakij(Sao Kantasilo)TitleLuang PorPersonalBornSao(1859-11-02)November 2, 1859Ban Kha Khom, Tambon Nong Khon, Amphoe ...

 

Taiwanese politician For the Taiwanese political scientist with the same name, see Tsai Ying-wen (political scientist).In this Taiwanese name, the surname is Tsai. Tsai Ing-wen蔡英文Official portrait, 20167th President of the Republic of ChinaIn office20 May 2016 – 20 May 2024Premier See list Lin ChuanLai Ching-teSu Tseng-changChen Chien-jen Vice PresidentChen Chien-jenLai Ching-tePreceded byMa Ying-jeouSucceeded byLai Ching-te13th, 15th and 17th Chairwoman of the Democratic Pro...