Complex projective plane

In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates

where, however, the triples differing by an overall rescaling are identified:

That is, these are homogeneous coordinates in the traditional sense of projective geometry.

Topology

The Betti numbers of the complex projective plane are

1, 0, 1, 0, 1, 0, 0, .....

The middle dimension 2 is accounted for by the homology class of the complex projective line, or Riemann sphere, lying in the plane. The nontrivial homotopy groups of the complex projective plane are . The fundamental group is trivial and all other higher homotopy groups are those of the 5-sphere, i.e. torsion.

Algebraic geometry

In birational geometry, a complex rational surface is any algebraic surface birationally equivalent to the complex projective plane. It is known that any non-singular rational variety is obtained from the plane by a sequence of blowing up transformations and their inverses ('blowing down') of curves, which must be of a very particular type. As a special case, a non-singular complex quadric in is obtained from the plane by blowing up two points to curves, and then blowing down the line through these two points; the inverse of this transformation can be seen by taking a point P on the quadric Q, blowing it up, and projecting onto a general plane in by drawing lines through P.

The group of birational automorphisms of the complex projective plane is the Cremona group.

Differential geometry

As a Riemannian manifold, the complex projective plane is a 4-dimensional manifold whose sectional curvature is quarter-pinched, but not strictly so. That is, it attains both bounds and thus evades being a sphere, as the sphere theorem would otherwise require. The rival normalisations are for the curvature to be pinched between 1/4 and 1; alternatively, between 1 and 4. With respect to the former normalisation, the imbedded surface defined by the complex projective line has Gaussian curvature 1. With respect to the latter normalisation, the imbedded real projective plane has Gaussian curvature 1.

An explicit demonstration of the Riemann and Ricci tensors is given in the n=2 subsection of the article on the Fubini-Study metric.

See also

References

Read other articles:

Santa Cruz200px|logoNama lengkapSanta Cruz Futebol ClubeJulukanCobra Coral (Coral Snake), Tricolor, O Mais Querido (The Most Beloved One)BerdiriFebruary 3, 1914StadionArruda, Recife, Brasil(Kapasitas: 63,000)KetuaALNManajerSandro BarbosaLigaCopa do Nordeste Campeonato Pernambucano Campeonato Brasileiro Série C Copa do Brasil [[Perlengkapan pemain (sepak bola)|]] kandang [[Perlengkapan pemain (sepak bola)|]] tandang Santa Cruz FC adalah nama tim sepak bola Brasil yang bermarkas di Recife, Bra...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Anversa (disambigua). Anversacomune(NL) Antwerpen(FR) Anvers Anversa – VedutaUna veduta di Anversa. LocalizzazioneStato Belgio Regione Fiandre Provincia Anversa ArrondissementAnversa AmministrazioneSindacoBart De Wever (N-VA) TerritorioCoordinate51°13′N 4°23′E / 51.216667°N 4.383333°E51.216667; 4.383333 (Anversa)Coordinate: 51°13′N 4°23′E / 51.216667°N 4.383333°E...

 

 

Kamen Rider The NextSutradaraRyuta TasakiProduserKazuo KatoShin'ichiro ShirakuraNaomi TakebeKoichi YadaDitulis olehToshiki InouePemeranMasaya KikawadaHassei TakanoKazuki KatoMiku IshidaErika MoriGoro Naya (Suara)Tomorowo TaguchiRie MashikoShinji RokkakuTakako MikiKyusaku ShimadaYosuke SaitoKatsumi Shiono (Suara)Penata musikGoro YasukawaSinematograferIssei TanakaPenyuntingEiryo OhataDistributorToei Co. LtdTanggal rilis27 Oktober 2007Durasi113 menitNegara JepangBahasaJepangPrekuelKamen Ri...

Donald I di ScoziaRitratto di Donald I di Scozia di Jacob Jacobsz de Wet II, oggi parte della Royal CollectionRe di ScoziaIn carica858 –13 aprile 862 PredecessoreKenneth I SuccessoreCostantino I Nome completoDomnall Mac Ailpín Altri titoliRe dei Pitti Nascita812 MortePerthshire, 13 aprile 862 Luogo di sepolturaIona Casa realeAlpin PadreAlpin II di Dalriada ReligioneCristianesimo Domnall Mac Ailpín, in inglese Donald MacAlpin, meglio conosciuto come re Donald I di Scozia (812 �...

 

 

2020年夏季奥林匹克运动会科索沃代表團科索沃国旗IOC編碼KOSNOC科索沃奧林匹克委員會網站www.noc-kosovo.org(英文)(阿爾巴尼亞文)(塞爾維亞文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員11參賽項目6个大项旗手开幕式:阿基爾·賈科瓦(英语:Akil Gjakova)和瑪琳達·開爾門蒂(柔道)[1]闭幕式�...

 

 

American politician and former mayor of Atlanta, Georgia Kasim Reed59th Mayor of AtlantaIn officeJanuary 3, 2010 – January 2, 2018Preceded byShirley FranklinSucceeded byKeisha Lance BottomsMember of the Georgia Senatefrom the 35th districtIn officeJanuary 13, 2003 – September 1, 2009Preceded byDonzella JamesSucceeded byDonzella JamesMember of the Georgia House of Representativesfrom the 52nd districtIn officeJanuary 11, 1999 – January 13, 2003Prece...

内華達州 美國联邦州State of Nevada 州旗州徽綽號:產銀之州、起戰之州地图中高亮部分为内華達州坐标:35°N-42°N, 114°W-120°W国家 美國建州前內華達领地加入聯邦1864年10月31日(第36个加入联邦)首府卡森城最大城市拉斯维加斯政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])喬·隆巴爾多(R斯塔...

 

 

Extinct genus of carnivores DormaalocyonTemporal range: 56.0–55.2 Ma PreꞒ Ꞓ O S D C P T J K Pg N ↓ Early Eocene[1] Life restoration of Dormaalocyon latouri Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Clade: Pan-Carnivora Clade: Carnivoramorpha Clade: Carnivoraformes Genus: †DormaalocyonSolé, 2014[2] Type species †Dormaalocyon latouriQuinet, 1966[3] Synonyms synonyms of species: D. latouri: Miacis ...

 

 

Cet article est une ébauche concernant une saison de club de football et Monaco. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. AS Monaco FC2009-2010 Généralités Président Étienne Franzi Entraîneur Guy Lacombe Résultats Championnat 8e 55 points (15V-10N-13D)39 buts pour, 45 contre Coupe de France Finaliste contre le Paris SG 0-1 Coupe de la Ligue 16e à l'extérieur contre l'AS Nancy L. 2-0 Meilleur but...

US Marine Corps base in California Camp Pendelton redirects here. For the National Guard camp in Virginia, see Camp Pendleton (Virginia). Marine Corps Base Camp PendletonNear Oceanside, California in the United StatesMarines hiking at Camp Pendleton during 2014MCB Camp PendletonLocation in the United StatesCoordinates33°12′53.1″N 117°23′15″W / 33.214750°N 117.38750°W / 33.214750; -117.38750TypeMarine Corps baseArea> 125,000 acres (51,000 hectares)Si...

 

 

تشيسلاف ميلوش (بالبولندية: Czesław Miłosz)‏  معلومات شخصية الميلاد 30 يونيو 1911(1911-06-30)شياولياي  الوفاة 14 أغسطس 2004 (93 سنة)كراكوف مواطنة بولندا الولايات المتحدة (1970–) ليتوانيا (1939–)  عضو في الأكاديمية الصربية للعلوم والفنون،  والأكاديمية الأمريكية للفنون والآداب،  وال�...

 

 

  提示:此条目页的主题不是芒語。 莽语Maŋ35区域越南萊州省、老挝、中国云南省族群莽族(莽人)母语使用人数约3165人(1999年)語系南亚语系 卡西—克木语族(英语:Khasi–Khmuic languages)莽语語言代碼ISO 639-3zngGlottologmang1378[1]ELPMang瀕危程度联合国教科文组织认定的瀕危語言[2]危险(UNESCO) 莽语(莽语:[maŋ35]、越南語:tiếng Mảng)是居住于越南、老�...

Not to be confused with United States national wheelchair rugby league team. United States USAIWRF Ranking3rdIWRF ZoneIWRF AmericasNational FederationUSQRACoach James GumbertParalympic GamesAppearances7Medals Gold: 1996, 2000, 2008 Silver : 2016, 2020 Bronze: 2004, 2012World ChampionshipsAppearances6Medals Gold: 1995, 1998, 2006, 2010 Silver: 2002 Bronze: 2014IWRF Americas ChampionshipAppearances4Medals Gold: 2009, 2011, 2013, 2017Uniforms Home Away The USA players at the 2008 Paralympic...

 

 

سيتاغروي  خريطة الموقع تقسيم إداري البلد اليونان  [1] التقسيم الأعلى بروسوتساني  إحداثيات 41°06′41″N 24°01′36″E / 41.111388888889°N 24.026666666667°E / 41.111388888889; 24.026666666667   السكان التعداد السكاني 535 (resident population of Greece) (2021)858 (resident population of Greece) (2001)736 (resident population of Greece) (1991)702 ...

 

 

Emperor of Japan from 1747 to 1762 Emperor Momozono桃園天皇Emperor of JapanReign9 June 1747 – 1762PredecessorSakuramachiSuccessorGo-SakuramachiShōguns See list Tokugawa Ieshige(1747–1760)Tokugawa Ieharu(1760–1762) BornTōhito (遐仁)(1742-04-14)14 April 1742Kyoto, Tokugawa shogunateDied31 August 1762(1762-08-31) (aged 20)Kyoto, Tokugawa shogunateBurialTsuki no wa no misasagi, KyotoSpouseIchijō TomikoIssueEmperor Go-MomozonoPrince SadamochiPosthumous nameTsuigō:Emperor Momoz...

فتحة مائية حرارية في المحيط الأطلسي توفر الطاقة والمغذيات للكائنات البحرية الكائن الحي كيميائي التغذية أو كيميائي التغذية[1] هو كائن حي يحصل على الطاقة من أكسدة مانحات الإلكترونات في بيئته.[2][3][4] وقد تكون هذه المركبات عضوية (كائن عضوي التغذية الكيميائي) أو ...

 

 

Unit of digital information, usually 8 bits This article is about the unit of information. For other uses, see Byte (disambiguation). byteUnit systemunit derived from bitUnit ofdigital information, data sizeSymbolB, o (when 8 bits) The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer[1][2] and for this reason it is the smallest addres...

 

 

Grażyna BrodzińskaBackground informationBirth nameGrażyna WaydaBorn (1951-05-03) May 3, 1951 (age 73)Kraków, PolandGenresOperettaOccupationSingerYears active1969–Musical artist Grażyna Brodzińska (née Wayda; born May 5, 1951) is a Polish soprano singer in opera and operetta, and musical actress,[1] nicknamed The First Lady of Polish Operetta.[2] Biography Brodzińska was born on May 5, 1951, in Kraków, the daughter of director Edmund Wayda and opera singer Iren...

United Kingdom legislationTerrorism Act 2000Act of ParliamentParliament of the United KingdomLong titleAn Act to make provision about terrorism; and to make temporary provision for Northern Ireland about the prosecution and punishment of certain offences, the preservation of peace and the maintenance of order.Citation2000 c. 11Territorial extent United Kingdom[1]DatesRoyal assent20 July 2000Status: AmendedText of statute as originally enactedRevised text of statute as amended Th...

 

 

Turkic language spoken by Tatars For other uses, see Tatar languages. This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used. See why. (May 2019) Tatarтатар телеtatar teleتاتار تئلئ‎ • تاتار ...