John Morgan (mathematician)

John Morgan
Born (1946-03-21) March 21, 1946 (age 78)
NationalityAmerican
Alma materRice University
AwardsSloan Research Fellow (1974)
Gauss Lectureship (2008)
Member of the National Academy of Sciences (2009)
Fellow of the American Mathematical Society (2012)
Scientific career
FieldsMathematics
InstitutionsStony Brook University
Columbia University
Doctoral advisorMorton L. Curtis
Doctoral studentsSadayoshi Kojima [ja]
Peter Ozsváth
Zoltán Szabó

John Willard Morgan (born March 21, 1946) is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.

Life

Morgan received his B.A. in 1968 and Ph.D. in 1969, both from Rice University.[1][2][3] His Ph.D. thesis, entitled Stable tangential homotopy equivalences, was written under the supervision of Morton L. Curtis.[1][2] He was an instructor at Princeton University from 1969 to 1972, and an assistant professor at MIT from 1972 to 1974.[1][3][4] He has been on the faculty at Columbia University since 1974, serving as the Chair of the Department of Mathematics from 1989 to 1991 and becoming Professor Emeritus in 2010.[1][3][4] Morgan is a member of the Simons Center for Geometry and Physics at Stony Brook University and served as its founding director from 2009 to 2016.[3][4]

From 1974 to 1976, Morgan was a Sloan Research Fellow.[1] In 2008, he was awarded a Gauss Lectureship by the German Mathematical Society. In 2009 he was elected to the National Academy of Sciences.[4] In 2012 he became a fellow of the American Mathematical Society.[5] Morgan is a Member of the European Academy of Sciences.[1]

Mathematical contributions

Morgan's best-known work deals with the topology of complex manifolds and algebraic varieties. In the 1970s, Dennis Sullivan developed the notion of a minimal model of a differential graded algebra.[6] One of the simplest examples of a differential graded algebra is the space of smooth differential forms on a smooth manifold, so that Sullivan was able to apply his theory to understand the topology of smooth manifolds. In the setting of Kähler geometry, due to the corresponding version of the Poincaré lemma, this differential graded algebra has a decomposition into holomorphic and anti-holomorphic parts. In collaboration with Pierre Deligne, Phillip Griffiths, and Sullivan, Morgan used this decomposition to apply Sullivan's theory to study the topology of compact Kähler manifolds. Their primary result is that the real homotopy type of such a space is determined by its cohomology ring. Morgan later extended this analysis to the setting of smooth complex algebraic varieties, using Deligne's formulation of mixed Hodge structures to extend the Kähler decomposition of smooth differential forms and of the exterior derivative.[7]

In 2002 and 2003, Grigori Perelman posted three papers to the arXiv which purported to use Richard Hamilton's theory of Ricci flow solve the geometrization conjecture in three-dimensional topology, of which the renowned Poincaré conjecture is a special case.[8] Perelman's first two papers claimed to prove the geometrization conjecture; the third paper gives an argument which would obviate the technical work in the second half of the second paper in order to give a shortcut to prove the Poincaré conjecture.

Starting in 2003, and culminating in a 2008 publication, Bruce Kleiner and John Lott posted detailed annotations of Perelman's first two papers to their websites, covering his work on the proof of the geometrization conjecture.[9] In 2006, Huai-Dong Cao and Xi-Ping Zhu published an exposition of Hamilton and Perelman's works, also covering Perelman's first two articles.[10] In 2007, Morgan and Gang Tian published a book on Perelman's first paper, the first half of his second paper, and his third paper. As such, they covered the proof of the Poincaré conjecture. In 2014, they published a book covering the remaining details for the geometrization conjecture. In 2006, Morgan gave a plenary lecture at the International Congress of Mathematicians in Madrid, saying that Perelman's work had "now been thoroughly checked. He has proved the Poincaré conjecture."[11]

Selected publications

Articles.

  • Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real homotopy theory of Kähler manifolds. Invent. Math. 29 (1975), no. 3, 245–274. MR0382702
  • John W. Morgan. The algebraic topology of smooth algebraic varieties. Inst. Hautes Études Sci. Publ. Math. No. 48 (1978), 137–204. MR0516917
    • John W. Morgan. Correction to: "The algebraic topology of smooth algebraic varieties". Inst. Hautes Études Sci. Publ. Math. No. 64 (1986), 185.
  • John W. Morgan and Peter B. Shalen. Valuations, trees, and degenerations of hyperbolic structures. I. Ann. of Math. (2) 120 (1984), no. 3, 401–476.
  • Marc Culler and John W. Morgan. Group actions on -trees. Proc. London Math. Soc. (3) 55 (1987), no. 3, 571–604.
  • John W. Morgan, Zoltán Szabó, Clifford Henry Taubes. A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture. J. Differential Geom. 44 (1996), no. 4, 706–788. MR1438191

Survey articles.

  • John W. Morgan. The rational homotopy theory of smooth, complex projective varieties (following P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan). Séminaire Bourbaki, Vol. 1975/76, 28ème année, Exp. No. 475, pp. 69–80. Lecture Notes in Math., Vol. 567, Springer, Berlin, 1977.
  • John W. Morgan. On Thurston's uniformization theorem for three-dimensional manifolds. The Smith conjecture (New York, 1979), 37–125, Pure Appl. Math., 112, Academic Press, Orlando, FL, 1984.
  • John W. Morgan. Trees and hyperbolic geometry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 590–597, Amer. Math. Soc., Providence, RI, 1987. MR0934260
  • John W. Morgan. Λ-trees and their applications. Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 1, 87–112.
  • Pierre Deligne and John W. Morgan. Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), 41–97, Amer. Math. Soc., Providence, RI, 1999.
  • John W. Morgan. Recent progress on the Poincaré conjecture and the classification of 3-manifolds. Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 1, 57–78. MR2115067
  • John W. Morgan. The Poincaré conjecture. International Congress of Mathematicians. Vol. I, 713–736, Eur. Math. Soc., Zürich, 2007.

Books.

  • John W. Morgan and Kieran G. O'Grady. Differential topology of complex surfaces. Elliptic surfaces with pg = 1: smooth classification. With the collaboration of Millie Niss. Lecture Notes in Mathematics, 1545. Springer-Verlag, Berlin, 1993. viii+224 pp. ISBN 3-540-56674-0
  • John W. Morgan, Tomasz Mrowka, and Daniel Ruberman. The L2-moduli space and a vanishing theorem for Donaldson polynomial invariants. Monographs in Geometry and Topology, II. International Press, Cambridge, MA, 1994. ii+222 pp. ISBN 1-57146-006-3
  • Robert Friedman and John W. Morgan. Smooth four-manifolds and complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 27. Springer-Verlag, Berlin, 1994. x+520 pp. ISBN 3-540-57058-6
  • John W. Morgan. The Seiberg-Witten equations and applications to the topology of smooth four-manifolds. Mathematical Notes, 44. Princeton University Press, Princeton, NJ, 1996. viii+128 pp. ISBN 0-691-02597-5
  • John Morgan and Gang Tian. Ricci flow and the Poincaré conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. xlii+521 pp. ISBN 978-0-8218-4328-4
    • John Morgan and Gang Tian. Correction to Section 19.2 of Ricci Flow and the Poincare Conjecture. arXiv:1512.00699
  • John W. Morgan and Frederick Tsz-Ho Fong. Ricci flow and geometrization of 3-manifolds. University Lecture Series, 53. American Mathematical Society, Providence, RI, 2010. x+150 pp. ISBN 978-0-8218-4963-7
  • Phillip Griffiths and John Morgan. Rational homotopy theory and differential forms. Second edition. Progress in Mathematics, 16. Springer, New York, 2013. xii+224 pp. ISBN 978-1-4614-8467-7, 978-1-4614-8468-4[12]
  • John Morgan and Gang Tian. The geometrization conjecture. Clay Mathematics Monographs, 5. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. x+291 pp. ISBN 978-0-8218-5201-9

References

  1. ^ a b c d e f "Biographical Sketch: John Morgan" (PDF). Chinese University of Hong Kong. Retrieved January 27, 2021.
  2. ^ a b John Morgan at the Mathematics Genealogy Project
  3. ^ a b c d "John Morgan". Simons Center for Geometry and Physics at Stony Brook University. Retrieved January 27, 2021.
  4. ^ a b c d "The Founding Director". Simons Center for Geometry and Physics at Stony Brook University. Retrieved January 27, 2021.
  5. ^ List of Fellows of the American Mathematical Society, retrieved 2013-02-10.
  6. ^ Dennis Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 269–331
  7. ^ Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 5–57.
  8. ^ Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
    Grisha Perelman. Ricci flow with surgery on three-manifolds. arXiv:math/0303109
    Grisha Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245
  9. ^ Bruce Kleiner and John Lott. Notes on Perelman's papers. Geom. Topol. 12 (2008), no. 5, 2587–2855.
  10. ^ Huai-Dong Cao and Xi-Ping Zhu. A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10 (2006), no. 2, 165–492.
  11. ^ John Morgan. The Poincaré Conjecture (special lecture). Minute 43:40.
  12. ^ Chen, Kuo-Tsai (1983). "Review: Rational homotopy theory and differential forms, by P. A. Griffiths and J. W. Morgan". Bull. Amer. Math. Soc. (N.S.). 8 (3): 496–498. doi:10.1090/s0273-0979-1983-15135-2.

Read other articles:

Maxence Prévot Informasi pribadiNama lengkap Maxence PrévotTanggal lahir 9 April 1997 (umur 26)Tempat lahir Belfort, FranceTinggi 184 m (603 ft 8 in)Posisi bermain GoalkeeperInformasi klubKlub saat ini SochauxNomor 16Karier junior2003–2004 AS Essert2004–2014 SochauxKarier senior*Tahun Tim Tampil (Gol)2014–2017 Sochaux B 17 (0)2016– Sochaux 89 (0)Tim nasional‡2013 France U16 1 (0)2016 France U20 1 (0)2017 Prancis U21 1 (0) * Penampilan dan gol di klub senior ha...

 

 

سعاد اللامي   معلومات شخصية الميلاد القرن 20  مدينة الصدر  مواطنة العراق  الحياة العملية المهنة ناشطة حقوق الإنسان  الجوائز جائزة نساء الشجاعة الدولية  (2009)  تعديل مصدري - تعديل   سعاد اللامي ناشطة في مجال حقوق المرأة.[1] والدتها شجعتها على الحصول على ا...

 

 

Singa Punjab beralih ke halaman ini. Untuk kegunaan lain, lihat Singa Punjab (disambiguasi). Lala Lajpat RaiLahir(1865-01-28)28 Januari 1865Dhudike, Punjab, India BritaniaMeninggal17 November 1928(1928-11-17) (umur 63)Lahore, Punjab, India BritaniaOrganisasiHindu Samaj (Arya Samaj), Kongres Nasional IndiaGerakan politikGerakan kemerdekaan India Lala Lajpat Rai pengucapanⓘ, (28 Januari 1865 – 17 November 1928) adalah seorang pengarang dan politikus Punjabi India yang pal...

Portuguese football manager and former player (born 1972) In this Portuguese name, the first or maternal family name is Andrade and the second or paternal family name is Silva Sá Pinto. Ricardo Sá Pinto Sá Pinto with Esteghlal in 2022Personal informationFull name Ricardo Manuel Andrade e Silva Sá PintoDate of birth (1972-10-10) 10 October 1972 (age 51)[1]Place of birth Porto, Portugal[1]Height 1.78 m (5 ft 10 in)[1]Position(s) ForwardTeam in...

 

 

Eiga Star☆Twinkle Pretty Cure - Hoshi no uta ni omoi wo kometeUna scena del filmTitolo originale映画 スター☆トゥインクルプリキュア 星のうたに想いをこめて Lingua originalegiapponese Paese di produzioneGiappone Anno2019 Durata71 min Rapporto1,78:1 Genereanimazione, fantastico RegiaYūta Tanaka SoggettoIzumi Tōdō SceneggiaturaJin Tanaka Casa di produzioneToei Animation MusicheYūki Hayashi, Asami Tachibana Art directorMiki Imai Character designAkira Takahashi...

 

 

Moshe LionMoshe Lion, walikota Yerusalem pada 2018 Walikota YerusalemPetahanaMulai menjabat 4 Desember 2018PendahuluNir BarkatPenggantiPetahana Informasi pribadiLahir06 Oktober 1961 (umur 62)Florentin, Tel Aviv, Israel[1]Partai politikYerushalayim ShelanuSuami/istriStavit[1]Anak4Alma materUniversitas Bar-IlanSunting kotak info • L • B Moshe Lion, atau Moshe Leon (Ibrani: משה ליאון, lahir 6 Oktober 1961), adalah seorang politikus Israel yang sekar...

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

 

 

Mediterranean life zones Floristic regions of Europe Main articles: Mediterranean Basin and Altitudinal zonation The climate and ecology of land immediately surrounding the Mediterranean Sea is influenced by several factors. Overall, the land has a Mediterranean climate, with mild, rainy winters and hot, dry summers. The climate induces characteristic Mediterranean forests, woodlands, and scrub vegetation. Plant life immediately near the Mediterranean is in the Mediterranean Floristic region,...

 

 

Place in Lapland, SwedenPorjusPorjusShow map of NorrbottenPorjusShow map of SwedenCoordinates: 66°57′N 19°49′E / 66.950°N 19.817°E / 66.950; 19.817CountrySwedenProvinceLaplandCountyNorrbotten CountyMunicipalityJokkmokk MunicipalityArea[1] • Total0.74 km2 (0.29 sq mi)Population (31 December 2015)[1] • Total343 • Density324/km2 (840/sq mi)Time zoneUTC+1 (CET) • Summer (DST)UT...

Patriotic Rally for the Renewal of the Central African RepublicRassemblement Patriotique pour le Renouveau de la CentrafriqueDamane Zakaria, former leader of RPRCLeadersDamane Zakaria (until 2022)Herbert Gontran Djono Ahaba[1]Dates of operation2014–2022Split fromSélékaHeadquartersTiringoulouBria (until 2021)Active regionsHaute-Kotto, Vakaga, Bamingui-Bangoran subprefecturesAlliesMLCJOpponentsFPRC (sometimes) Wagner Group (2022)Battles and wars2020 N'Délé clashesSucceeded...

 

 

Control and development of musculature Bodybuilder redirects here. For the 2022 Russian film, see Bodybuilder (film). BodybuildingArnold Schwarzenegger, one of the most notable figures in bodybuilding, 1974Highest governing bodyInternational Federation of BodyBuilding & FitnessNicknamesBBFirst developedEngland, late 19th centuryCharacteristicsContactNoTeam membersNoMixed-sexNoTypeIndoorVenueAuditoriumPresenceCountry or regionWorldwideOlympicNoParalympicNoWorld Games1981–2009 B...

 

 

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2023) ماتيوس فيتال معلومات شخصية الميلاد 12 فبراير 1998 (26 سنة)  ريو دي جانيرو  الطول 1.75 م (5 قدم 9 بوصة) مر...

 

 

Bay of Lake Ontario in New York, USA This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sodus Bay – news · newspapers · books · scholar · JSTOR (December 2023) (Learn how and when to remove this message) Sodus BayAssorodus (Onondaga)Flooded marina on the baySodus BayCoordinates43°15′25″N 76°58′01�...

 

 

يهود مزراحيونمعلومات عامةنسبة التسمية مصرايم التعداد الكليالتعداد 4٬000٬000 مناطق الوجود المميزةالبلد  القائمة ... إسرائيلفرنساالولايات المتحدةكنداإيرانأذربيجانالهندالمغربالمملكة المتحدةاليمنالعراقالبحرينلبنان  إسرائيل 2,500,000-3,000,000 فرنسا 400,000 الولايات المتحد...

  C2 1000 metriBerlino 1936 Informazioni generaliLuogoBacino di Grünau Periodo8 agosto 1936 Partecipanti5 da 5 nazioni Podio Vladimír SyrovátkaJan Brzák-Felix  Cecoslovacchia Rupert WeinstablKarl Proisl  Austria Warren SakerHarvey Charters  Canada Edizione precedente e successiva Prima apparizione Londra 1948 Voce principale: Canoa/kayak ai Giochi della XI Olimpiade. Canoa/kayak a Berlino 1936 Velocità Canadese C1 1000 m uomini C2 1000 m uomini C2 10000 m uomini K...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. ...

 

 

Plucked instruments PsalterionWoman playing triangular frame-harp, a psaltērion or trigōnon, in red-figure pottery from Apulia, ca. 320–310 BC C. Anzi (British Museum).String instrumentOther names Psalterion[1] (ψαλτήριον) trigonos(of Phrygia, Syria, or Egypt[2][3] pektis (an angular harp of Lydia),[4] magadis (an angular harp of Lydia),[5] sambuca (an angular harp of foreign origin),[6] epigonion (ἐπιγόνειον) Classificat...

Proposed evolutionary event in the history of metazoa, producing the Ediacaran biota Dickinsonia, an enigmatic quilted organism with glide symmetry which may have been an early animal Cloudina may have been one of the first mineralized animals to appear.[1] Kimberella was originally interpreted as a cubozoan cnidarian, although it is now believed it was an early mollusc.[2] The Ediacaran trace fossils are a sign of animal movement as well as sediment disturbance, they show pos...

 

 

French duke; legitimized son of Louis XIV (1670–1736) Louis-AugusteDuke of MaineSovereign Prince of the DombesPortrait by François de TroyBornLouis Auguste de Bourbon(1670-03-31)31 March 1670Château de Saint-Germain-en-Laye, FranceDied14 May 1736(1736-05-14) (aged 66)Château de Sceaux, FranceBurialÉglise, Sceaux, FranceSpouse Louise Bénédicte de Bourbon ​ ​(m. 1692)​Issue Louis Auguste, Prince of Dombes Louis Charles, Count of Eu Louise Françoi...