Strain (mechanics)

Strain
Other names
Strain tensor
SI unit1
Other units
%
In SI base unitsm/m
Behaviour under
coord transformation
tensor
Dimension

In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.

Strain has dimension of a length ratio, with SI base units of meter per meter (m/m). Hence strains are dimensionless and are usually expressed as a decimal fraction or a percentage. Parts-per notation is also used, e.g., parts per million or parts per billion (sometimes called "microstrains" and "nanostrains", respectively), corresponding to μm/m and nm/m.

Strain can be formulated as the spatial derivative of displacement: where I is the identity tensor. The displacement of a body may be expressed in the form x = F(X), where X is the reference position of material points of the body; displacement has units of length and does not distinguish between rigid body motions (translations and rotations) and deformations (changes in shape and size) of the body. The spatial derivative of a uniform translation is zero, thus strains measure how much a given displacement differs locally from a rigid-body motion.[1]

A strain is in general a tensor quantity. Physical insight into strains can be gained by observing that a given strain can be decomposed into normal and shear components. The amount of stretch or compression along material line elements or fibers is the normal strain, and the amount of distortion associated with the sliding of plane layers over each other is the shear strain, within a deforming body.[2] This could be applied by elongation, shortening, or volume changes, or angular distortion.[3]

The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers, the normal strain, which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other, the shear strain, radiating from this point. However, it is sufficient to know the normal and shear components of strain on a set of three mutually perpendicular directions.

If there is an increase in length of the material line, the normal strain is called tensile strain; otherwise, if there is reduction or compression in the length of the material line, it is called compressive strain.

Strain regimes

Depending on the amount of strain, or local deformation, the analysis of deformation is subdivided into three deformation theories:

  • Finite strain theory, also called large strain theory, large deformation theory, deals with deformations in which both rotations and strains are arbitrarily large. In this case, the undeformed and deformed configurations of the continuum are significantly different and a clear distinction has to be made between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
  • Infinitesimal strain theory, also called small strain theory, small deformation theory, small displacement theory, or small displacement-gradient theory where strains and rotations are both small. In this case, the undeformed and deformed configurations of the body can be assumed identical. The infinitesimal strain theory is used in the analysis of deformations of materials exhibiting elastic behavior, such as materials found in mechanical and civil engineering applications, e.g. concrete and steel.
  • Large-displacement or large-rotation theory, which assumes small strains but large rotations and displacements.

Strain measures

In each of these theories the strain is then defined differently. The engineering strain is the most common definition applied to materials used in mechanical and structural engineering, which are subjected to very small deformations. On the other hand, for some materials, e.g., elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e.g. typical engineering strains greater than 1%;[4] thus other more complex definitions of strain are required, such as stretch, logarithmic strain, Green strain, and Almansi strain.

Engineering strain

Engineering strain, also known as Cauchy strain, is expressed as the ratio of total deformation to the initial dimension of the material body on which forces are applied. In the case of a material line element or fiber axially loaded, its elongation gives rise to an engineering normal strain or engineering extensional strain e, which equals the relative elongation or the change in length ΔL per unit of the original length L of the line element or fibers (in meters per meter). The normal strain is positive if the material fibers are stretched and negative if they are compressed. Thus, we have , where e is the engineering normal strain, L is the original length of the fiber and l is the final length of the fiber.

The true shear strain is defined as the change in the angle (in radians) between two material line elements initially perpendicular to each other in the undeformed or initial configuration. The engineering shear strain is defined as the tangent of that angle, and is equal to the length of deformation at its maximum divided by the perpendicular length in the plane of force application, which sometimes makes it easier to calculate.

Stretch ratio

The stretch ratio or extension ratio (symbol λ) is an alternative measure related to the extensional or normal strain of an axially loaded differential line element. It is defined as the ratio between the final length l and the initial length L of the material line.

The extension ratio λ is related to the engineering strain e by This equation implies that when the normal strain is zero, so that there is no deformation, the stretch ratio is equal to unity.

The stretch ratio is used in the analysis of materials that exhibit large deformations, such as elastomers, which can sustain stretch ratios of 3 or 4 before they fail. On the other hand, traditional engineering materials, such as concrete or steel, fail at much lower stretch ratios.

Logarithmic strain

The logarithmic strain ε, also called, true strain or Hencky strain.[5] Considering an incremental strain (Ludwik) the logarithmic strain is obtained by integrating this incremental strain: where e is the engineering strain. The logarithmic strain provides the correct measure of the final strain when deformation takes place in a series of increments, taking into account the influence of the strain path.[2]

Green strain

The Green strain is defined as:

Almansi strain

The Euler-Almansi strain is defined as

Strain tensor

The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."[6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer".[6] Thus, strains are classified as either normal or shear. A normal strain is perpendicular to the face of an element, and a shear strain is parallel to it. These definitions are consistent with those of normal stress and shear stress.

The strain tensor can then be expressed in terms of normal and shear components as:

Geometric setting

Two-dimensional geometric deformation of an infinitesimal material element

Consider a two-dimensional, infinitesimal, rectangular material element with dimensions dx × dy, which, after deformation, takes the form of a rhombus. The deformation is described by the displacement field u. From the geometry of the adjacent figure we have and For very small displacement gradients the squares of the derivative of and are negligible and we have

Normal strain

For an isotropic material that obeys Hooke's law, a normal stress will cause a normal strain. Normal strains produce dilations.

The normal strain in the x-direction of the rectangular element is defined by Similarly, the normal strain in the y- and z-directions becomes

Shear strain

Shear strain
Common symbols
γ or ε
SI unit1, or radian
Derivations from
other quantities
γ = τ/G

The engineering shear strain (γxy) is defined as the change in angle between lines AC and AB. Therefore,

From the geometry of the figure, we have For small displacement gradients we have For small rotations, i.e. α and β are ≪ 1 we have tan αα, tan ββ. Therefore, thus By interchanging x and y and ux and uy, it can be shown that γxy = γyx.

Similarly, for the yz- and xz-planes, we have

Volume strain

The volumetric strain, also called bulk strain, is the relative variation of the volume, as arising from dilation or compression; it is the first strain invariant or trace of the tensor: Actually, if we consider a cube with an edge length a, it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions and V0 = a3, thus as we consider small deformations, therefore the formula.

Real variation of volume (top) and the approximated one (bottom): the green drawing shows the estimated volume and the orange drawing the neglected volume

In case of pure shear, we can see that there is no change of the volume.

Metric tensor

A strain field associated with a displacement is defined, at any point, by the change in length of the tangent vectors representing the speeds of arbitrarily parametrized curves passing through that point. A basic geometric result, due to Fréchet, von Neumann and Jordan, states that, if the lengths of the tangent vectors fulfil the axioms of a norm and the parallelogram law, then the length of a vector is the square root of the value of the quadratic form associated, by the polarization formula, with a positive definite bilinear map called the metric tensor.

See also

References

  1. ^ Lubliner, Jacob (2008). Plasticity Theory (PDF) (Revised ed.). Dover Publications. ISBN 978-0-486-46290-5. Archived from the original (PDF) on 2010-03-31.
  2. ^ a b Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. ISBN 0-7506-8025-3. Archived from the original on 2017-12-22.
  3. ^ "Earth."Encyclopædia Britannica from Encyclopædia Britannica 2006 Ultimate Reference Suite DVD .[2009].
  4. ^ Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. p. 41. ISBN 0-7506-8025-3. Archived from the original on 2017-12-22.
  5. ^ Hencky, H. (1928). "Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen". Zeitschrift für technische Physik. 9: 215–220.
  6. ^ a b "ISO 80000-4:2019". ISO. 2013-08-20. Retrieved 2023-08-28.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Hirota Riki atau MAKI (lahir 17 Februari 2006) adalah seorang penyanyi asal Jepang. Ia tergabung dalam grup vokal laki-laki &TEAM. Ibunya berasal dari Jepang dan ayahnya berasal dari Jerman. Ia fasih berbahasa Inggris, Jepang, dan Jerman.[1 ...

 

Golak perahu yang tidak memiliki geladak Golak adalah tepi atas lambung kapal atau perahu . Awalnya strukturnya adalah golak terdapat pada kapal perang yang berlayar, sebuah balok penguat horizontal ditambahkan pada dan di atas tingkat geladak senjata untuk mengimbangi tekanan yang diciptakan oleh penembakan artileri . Seiring waktu, ia tetap menjadi bagian berharga yang dipasang di kapal komersial dan rekreasi. Pada perahu modern, ini adalah tepi atas lambung kapal yang biasanya terdapat beb...

 

Artikel ini mengenai Allah dalam istilah Kekristenan di Indonesia dan bukan mengenai Allah, Tuhan dalam Islam. Untuk pemahaman lebih lanjut, lihat artikel Penggunaan Allah bagi umat Kristen Indonesia. Artikel ini sebagian besar atau seluruhnya berasal dari satu sumber. Diskusi terkait dapat dibaca pada the halaman pembicaraan. Tolong bantu untuk memperbaiki artikel ini dengan menambahkan rujukan ke sumber lain yang tepercaya. Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada ...

العلاقات البحرينية الصربية البحرين صربيا   البحرين   صربيا تعديل مصدري - تعديل   العلاقات البحرينية الصربية هي العلاقات الثنائية التي تجمع بين البحرين وصربيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الب�...

 

Artikel ini bukan mengenai mazhab pemikiran, istilah filsafat. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Mazhab – berita · surat kabar · buku · cendekiawan · JSTOR Bagian dari seri bertopik IslamUshul fikih Sumber-sumber hukum Islam Al-Qur'an Hadis I...

 

العلاقات الأذربيجانية البوروندية أذربيجان بوروندي   أذربيجان   بوروندي تعديل مصدري - تعديل   العلاقات الأذربيجانية البوروندية هي العلاقات الثنائية التي تجمع بين أذربيجان وبوروندي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد�...

Thüngersheim. Thüngersheim adalah kota yang terletak di distrik Würzburg di Bayern, Jerman. Kota Thüngersheim memiliki luas sebesar 11.06 km². Thüngersheim pada tahun 2006, memiliki penduduk sebanyak 2.779 jiwa. lbsKota dan kotamadya di Würzburg Altertheim Aub Bergtheim Bieberehren Bütthard Eibelstadt Eisenheim Eisingen Erlabrunn Estenfeld Frickenhausen am Main Gaukönigshofen Gelchsheim Gerbrunn Geroldshausen Giebelstadt Greußenheim Güntersleben Hausen bei Würzburg Helmstadt ...

 

Prem'er-Liga 2020-2021TINKOFF Russian Premier Liga 2020-2021 Competizione Prem'er-Liga Sport Calcio Edizione 29ª Organizzatore RFS Date dall'8 agosto 2020al 16 maggio 2021 Luogo  Russia Partecipanti 16 Formula Girone all'italiana Risultati Vincitore Zenit San Pietroburgo(7º titolo) Retrocessioni RotorTambov Statistiche Miglior marcatore Artëm Dzjuba (20) Incontri disputati 240 Gol segnati 637 (2,65 per incontro) Cronologia della competizione 2019-2020 2021-2022 Manuale ...

 

List of events ← 1673 1672 1671 1674 in Denmark → 1675 1676 1677 Decades: 1650s 1660s 1670s 1680s 1690s See also:Other events of 1674List of years in Denmark Events from the year 1674 in Denmark. Incumbents Monarch - Christian V[1] Events Undated Formal diplomatic relations with China.[2] Births 28 February - Christian Gyldenløve, military officer (died 1703) 5 December - Iver Rosenkrantz, statesman and landowner (died 1745) Full date unknown Deaths 13 February -...

Indian singer songwriter Ketaki MategaonkarKetaki with mirchi music awardBorn (1994-02-22) 22 February 1994 (age 30)Nagpur, Maharashtra, IndiaEducationMusicians Institute, Los Angeles, CAOccupationsSongwriterSingerPerformerActorYears active1998–presentParentSuvarna MategaonkarWebsiteKetaki Mategaonkar Ketaki Mategaonkar is an Indian singer, songwriter, actress, and performer.[1][2] She was born in Nagpur, Maharashtra. Mategaonkar mainly appears in Marathi Cinema an...

 

Position des mains sur le clavier d'un piano. Glenn Gould disait : « La technique du piano est en vérité très simple, mais il faut des années pour la maîtriser ». Technique physique du piano Position du corps face à l'instrument Les observateurs attentifs des gravures, peintures, photographies et vidéo de pianistes célèbres seront surpris de constater à quel point la position des pianistes face à leur clavier est variée. Franz Liszt nous paraît dominer son clavie...

 

Les Grands Thermes de La Bourboule sont un centre thérapeutique hydrothermal spécialisé dans la crénothérapie. Histoire Affiche de Michel Simonidy, au début du XXe siècle. La station est créée en 1875[1]. Au début du 20e siècle, c'est une station à la mode qui accueille des célébrités. Localisation Situé à La Bourboule, une vallée au cœur du parc régional des volcans d'Auvergne, plus exactement dans le massif des Monts Dore (Sancy), la station est implantée en bord ...

The Stoneham IndependentTypeWeekly newspaperFormatBroadsheetOwner(s)Woburn Daily Times Inc.PublisherPeter M HaggertyEditorMark HaggertyFounded1870Headquarters1 Arrow Drive, Woburn, Massachusetts 01801  United StatesCirculation4,000 in 2007[1]Websitehomenewshere.com The Stoneham Independent, founded in 1870, is published each Wednesday from offices at 1 Arrow Drive, Woburn, Massachusetts, United States. Sisters The Stoneham Independent's parent company, Woburn Daily Times Inc., al...

 

豪栄道 豪太郎 場所入りする豪栄道基礎情報四股名 澤井 豪太郎→豪栄道 豪太郎本名 澤井 豪太郎愛称 ゴウタロウ、豪ちゃん、GAD[1][2]生年月日 (1986-04-06) 1986年4月6日(38歳)出身 大阪府寝屋川市身長 183cm体重 160kgBMI 47.26所属部屋 境川部屋得意技 右四つ・出し投げ・切り返し・外掛け・首投げ・右下手投げ成績現在の番付 引退最高位 東大関生涯戦歴 696勝493敗...

 

Katedral JacksonKatedral Santo Petrus Rasulbahasa Inggris: Cathedral of Saint Peter the ApostleKatedral Jackson32°18′04″N 90°11′03″W / 32.30111°N 90.18417°W / 32.30111; -90.18417Koordinat: 32°18′04″N 90°11′03″W / 32.30111°N 90.18417°W / 32.30111; -90.18417Lokasi123 North West StreetJackson, MississippiNegaraAmerika SerikatDenominasiGereja Katolik RomaSitus webcathedralsaintpeter.orgSejarahDidirikan23 Agustus 1846Tangg...

Anemia caused by medical interventions Medical conditionIatrogenic anemiaOther namesNosocomial anemia, hospital-acquired anemiaExcessive blood draws are a major cause of iatrogenic anemia.[1]CausesRepeated blood draws; surgical and medical procedures; intravenous fluid administration[2]PreventionDrawing smaller volumes of blood; using blood conservation devices; limiting laboratory test ordering[1][3] Iatrogenic anemia, also known as nosocomial anemia or hospit...

 

MusicalJamaicaOriginal Cast RecordingMusicHarold ArlenLyricsE.Y. HarburgBookE.Y. Harburg Fred SaidyProductions1957 Broadway Jamaica is a musical with a book by Yip Harburg and Fred Saidy, lyrics by Harburg, and music by Harold Arlen. It is set on a small island off the coast of Jamaica, and tells about a simple island community fighting to avoid being overrun by American commercialism. Arlen's music parodies the popular form of Calypso, which was in vogue in the 1950s, largely as a result of ...

 

نهائي كأس الأمم الأفريقية لكرة القدم 2013الحدثكأس الأمم الأفريقية لكرة القدم 2013 نيجيريا بوركينا فاسو 1 0 التاريخ10 فبراير 2013 (2013-02-10)الملعبملعب البنك الوطني الأول، جوهانسبورغالحكمجمال حيمودي  الحضور85000   → 2012 2015 ← نهائي كأس الأمم الأفريقية 2013 هي مباراة في كرة الق...

Questa voce sull'argomento calciatori panamensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Cristian MartínezNazionalità Panama Altezza170 cm Calcio RuoloCentrocampista Squadra Al-Jandal CarrieraSquadre di club1 2012-2016 Chorrillo37 (3)2016→  Columbus Crew5 (1)2016→  Pittsburgh Riverhounds8 (0)2017 Columbus Crew8 (0)2017→  FC Cincinnati1 (0)2018 Colu...

 

Energy drink This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Reload drink – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and wh...