Wavefront

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase.[1] The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency (otherwise the phase is not well defined).

Wavefronts usually move with time. For waves propagating in a unidimensional medium, the wavefronts are usually single points; they are curves in a two dimensional medium, and surfaces in a three-dimensional one.

The wavefronts of a plane wave are planes.
Wavefronts change shape after going through a lens.

For a sinusoidal plane wave, the wavefronts are planes perpendicular to the direction of propagation, that move in that direction together with the wave. For a sinusoidal spherical wave, the wavefronts are spherical surfaces that expand with it. If the speed of propagation is different at different points of a wavefront, the shape and/or orientation of the wavefronts may change by refraction. In particular, lenses can change the shape of optical wavefronts from planar to spherical, or vice versa.

In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets.[2] The characteristic bending pattern is most pronounced when a wave from a coherent source (such as a laser) encounters a slit/aperture that is comparable in size to its wavelength, as shown in the inserted image. This is due to the addition, or interference, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of different lengths to the registering surface. If there are multiple, closely spaced openings (e.g., a diffraction grating), a complex pattern of varying intensity can result.

Simple wavefronts and propagation

Optical systems can be described with Maxwell's equations, and linear propagating waves such as sound or electron beams have similar wave equations. However, given the above simplifications, Huygens' principle provides a quick method to predict the propagation of a wavefront through, for example, free space. The construction is as follows: Let every point on the wavefront be considered a new point source. By calculating the total effect from every point source, the resulting field at new points can be computed. Computational algorithms are often based on this approach. Specific cases for simple wavefronts can be computed directly. For example, a spherical wavefront will remain spherical as the energy of the wave is carried away equally in all directions. Such directions of energy flow, which are always perpendicular to the wavefront, are called rays creating multiple wavefronts.[3]

Rays and wavefronts

The simplest form of a wavefront is the plane wave, where the rays are parallel to one another. The light from this type of wave is referred to as collimated light. The plane wavefront is a good model for a surface-section of a very large spherical wavefront; for instance, sunlight strikes the earth with a spherical wavefront that has a radius of about 150 million kilometers (1 AU). For many purposes, such a wavefront can be considered planar over distances of the diameter of Earth.

In an isotropic medium wavefronts travel with the same speed in all directions.

Wavefront aberrations

Methods using wavefront measurements or predictions can be considered an advanced approach to lens optics, where a single focal distance may not exist due to lens thickness or imperfections. For manufacturing reasons, a perfect lens has a spherical (or toroidal) surface shape though, theoretically, the ideal surface would be aspheric. Shortcomings such as these in an optical system cause what are called optical aberrations. The best-known aberrations include spherical aberration and coma.[4]

However, there may be more complex sources of aberrations such as in a large telescope due to spatial variations in the index of refraction of the atmosphere. The deviation of a wavefront in an optical system from a desired perfect planar wavefront is called the wavefront aberration. Wavefront aberrations are usually described as either a sampled image or a collection of two-dimensional polynomial terms. Minimization of these aberrations is considered desirable for many applications in optical systems.

Wavefront sensor and reconstruction techniques

A wavefront sensor is a device which measures the wavefront aberration in a coherent signal to describe the optical quality or lack thereof in an optical system. There are many applications that include adaptive optics, optical metrology and even the measurement of the aberrations in the eye itself. In this approach, a weak laser source is directed into the eye and the reflection off the retina is sampled and processed. Another application of software reconstruction of the phase is the control of telescopes through the use of adaptive optics.

Mathematical techniques like phase imaging or curvature sensing are also capable of providing wavefront estimations. These algorithms compute wavefront images from conventional brightfield images at different focal planes without the need for specialised wavefront optics. While Shack-Hartmann lenslet arrays are limited in lateral resolution to the size of the lenslet array, techniques such as these are only limited by the resolution of digital images used to compute the wavefront measurements. That said, those wavefront sensors suffer from linearity issues and so are much less robust than the original SHWFS, in term of phase measurement.

There are several types of wavefront sensors, including:

Although an amplitude splitting interferometer such as the Michelson interferometer could be called a wavefront sensor, the term is normally applied to instruments that do not require an unaberrated reference beam to interfere with.

See also

References

  1. ^ Essential Principles of Physics, P. M. Whelan, M. J. Hodgeson, 2nd Edition, 1978, John Murray, ISBN 0-7195-3382-1
  2. ^ Wireless Communications: Principles and Practice, Prentice Hall communications engineering and emerging technologies series, T. S. Rappaport, Prentice Hall, 2002 pg 126
  3. ^ University Physics – With Modern Physics (12th Edition), H. D. Young, R. A. Freedman (Original edition), Addison-Wesley (Pearson International), 1st Edition: 1949, 12th Edition: 2008, ISBN 0-321-50130-6, ISBN 978-0-321-50130-1
  4. ^ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3

Further reading

Textbooks and books

Journals

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Ahmad Sukardja – berita · surat kabar · buku · cendekiawan · JSTOR Yang Mulia Prof. Dr.Ahmad SukardjaS.H., M.A.Hakim Agung IndonesiaMasa jabatan18 Juni 2003 – 16 September 2012Ditunjuk olehMeg...

Variety of grape Madeleine RoyaleGrape (Vitis)Handbuch der Tafeltraubenkultur, Berlin, Paul Parey, 1894SpeciesVitis viniferaAlso calledKönigliche Magdalenentraube (more)OriginFranceNotable winesTable/ornamental grapeVIVC number7068 Madeleine Royale is a variety of white grape. It is mostly grown for table grapes or ornamental purposes, but is notable as a parent of Müller-Thurgau and Madeleine Angevine. It ripens extremely early, in some cases by the 22 July, the feast day of Mary Magdalene...

Маленков Георгій Максиміліановичрос. Георгий Максимилианович Маленков Народився 8 січня 1902(1902-01-08)[1][2][…]Оренбург, Оренбурзька губернія, Російська імперіяПомер 14 січня 1988(1988-01-14)[4][5][…] (86 років)Москва, СРСР[3]Поховання Кунцевське кладовищеКраїна  Р�...

Republik Yamanالجمهورية اليمنيةAl-Jumhūrīyah al-Yamanīyah (Arab) Bendera Lambang Semboyan: الله، الوَطَن، الثَورة، الوَحدة Allah, al-Waṭan, ats-Tsaurah, al-Waḥdah(Arab: Allah, Negara, Revolusi, Persatuan)Lagu kebangsaan:  الجمهورية المتحدة Al-Jumhūrīyah al-Muttaḥidâh (Indonesia: Republik Persatuan) Perlihatkan BumiPerlihatkan peta BenderaIbu kota(dan kota terbesar)Sana'a15°17′N 44°24′E / 15...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) البنك الروماني للتطويرالشعارمعلومات عامةالجنسية رومانيا التأسيس 19 يونيو 1923 النوع عمل تجاري — مؤسسة الائتمان — بنك — مؤسسة مالية المقر الرئيسي بوخارست �...

لاري بلوك معلومات شخصية اسم الولادة (بالإنجليزية: Lawrence Joel Block)‏  الميلاد 30 أكتوبر 1942(1942-10-30)نيويورك، نيويورك الوفاة 7 أكتوبر 2012 (69 سنة)نيويورك مواطنة الولايات المتحدة  الحياة العملية المهنة ممثل اللغة الأم الإنجليزية  اللغات الإنجليزية  سنوات النشاط 1971-2012 المواقع I...

Vlaardingen WestRotterdam Metro stationGeneral informationLocationNetherlandsCoordinates51°54′14″N 4°18′51″E / 51.90389°N 4.31417°E / 51.90389; 4.31417Line(s)Schiedam–Hoek van Holland railwayPlatforms1 island platform 1 side platformTracks3HistoryOpened1 June 1969Closed1 April 2017Rebuilt30 September 2019Services Preceding station Rotterdam Metro Following station From January 2019 Terminus Line ANot on evenings and early weekend mornings Vlaardingen Cent...

Island of Croatia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Male Srakane – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) This article is about the island and the eponymous village. For the village near Čavle, see Ilovik, Čavle. Male S...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2016) Schools in West Bengal, IndiaGoutam Smriti Satpati Binapani Vidyamandir G. S. Satpati Binapani VidyamandirSchoolsSatpati High SchoolGoutam Smriti Satpati Binapani VidyamandirLocation in West Bengal, IndiaCoordinates: 22°35′N 87°03′E / 22.58°N 87.05°E / 22.58; 87.05Country IndiaStateWest ...

لويسبرغ     الإحداثيات 37°48′15″N 80°26′25″W / 37.804166666667°N 80.440277777778°W / 37.804166666667; -80.440277777778  تاريخ التأسيس 1782  تقسيم إداري  البلد الولايات المتحدة[1][2]  التقسيم الأعلى مقاطعة غرينبريه  عاصمة لـ مقاطعة غرينبريه  خصائص جغرافية  المساحة 9.866313 �...

قرية رهقة  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة المحويت المديرية مديرية ملحان العزلة عزلة الشمارية السكان التعداد السكاني 2004 السكان 961   • الذكور 492   • الإناث 469   • عدد الأسر 98   • عدد المساكن 99 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش)...

Papua New Guinea educator DameRose KekedoDBEfrom her biography by Eric JohnsBornRosalina Violet Kekedo1942Abau, Central Province, Papua New GuineaDied25 February 2005Port MoresbyOccupation(s)Teacher, lecturer, administratorKnown forFirst woman Chancellor of the University of Papua New Guinea Dame Rosalina Violet Kekedo DBE (1942 – 25 February 2005), better known as Rose Kekedo, was a leading educator in Papua New Guinea (PNG) and the first woman to be chancellor of the University o...

Ini adalah nama Tionghoa; marganya adalah Lai. Lai Feng-wei賴峰偉Magistrat Kabupaten PenghuPetahanaMulai menjabat 25 Desember 2018PendahuluChen Kuang-fuMasa jabatan20 Desember 1997 – 20 Desember 2005PendahuluJohn Lieh ChengPenggantiWang Chien-faMenteri EksaminasiMasa jabatan29 Juli 2010 – 10 Februari 2012PendahuluYang Chao-hsiangPenggantiTung Pao-cheng Informasi pribadiLahirPenghu, Taiwan20 September 1953 (umur 70)KebangsaanRepublik TiongkokPartai politikKuom...

В Википедии есть статьи о других людях с фамилией Деникин. Иван Ефимович Деникин майор пограничной стражи Иван Ефимович Деникин Дата рождения 1807(1807) Место рождения д. Ореховка (Саратовская губерния) Дата смерти 1885(1885) Принадлежность  Российская империя Род войск �...

For the horror film, see Hello Mary Lou: Prom Night II. 1961 single by Ricky NelsonHello Mary LouSingle by Ricky Nelsonfrom the album Rick Is 21 A-sideTravelin' ManReleasedMay 1961Recorded1960−61GenreRockabilly[1]Length2:17LabelImperial Records #5741Songwriter(s)Gene Pitney, Cayet MangiaracinaRicky Nelson singles chronology You Are the Only One (1960) Hello Mary Lou (1961) A Wonder Like You/Everlovin' (1961) Official audioHello Mary Lou (Remastered) on YouTube Hello Mary Lou is a so...

Hospital near Birmingham, England Hospital in EnglandSandwell General HospitalSandwell and West Birmingham Hospitals NHS TrustSandwell General Hospital's main block, August 2016Shown in West MidlandsGeographyLocationSandwell, West Midlands, England, United KingdomCoordinates52°31′40″N 1°59′20″W / 52.5277°N 1.9889°W / 52.5277; -1.9889OrganisationCare systemPublic NHSTypeDistrict GeneralAffiliated university University of Birmingham Aston University Birmingha...

History of the US state of Michigan For the magazine, see Michigan History (magazine). The Great Seal of the State of Michigan History of Michigan By year Pre-statehood U.S. Civil War Since 1900 Topics: Cities - Politics  Michigan portalvteThe history of human activity in Michigan, a U.S. state in the Great Lakes, began with settlement of the western Great Lakes region by Paleo-Indians perhaps as early as 11,000 B.C.E. One early technology they developed was the use of native copper,...

Suburb of Melbourne, Victoria, AustraliaChirnside ParkMelbourne, VictoriaEdward RoadChirnside ParkCoordinates37°45′14″S 145°19′37″E / 37.754°S 145.327°E / -37.754; 145.327Population11,779 (2021 census)[1] • Density528.2/km2 (1,368.0/sq mi)Postcode(s)3116Elevation116 m (381 ft)Area22.3 km2 (8.6 sq mi)Location 38 km (24 mi) NE of Melbourne CBD (Central Melbourne) 4 km (2 mi) NW of Lily...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Franck OhandzaInformasi pribadiNama lengkap Franck Ohandza ZoaTanggal lahir 28 September 1991 (umur 32)Tempat lahir Ngong, KamerunTinggi 5 ft 9,25 in (1,76 m)Posisi bermain PenyerangInformasi klubKlub saat ini Greuther Fürth (pinj...

アンドラCF(英語版)とは異なります。 FCアンドラ原語表記 Futbol Club Andorra愛称 Els Tricolorsクラブカラー     青・    黄・    赤創設年 1942年所属リーグ セグンダ・ディビシオン所属ディビジョン 2部(2022-23)ホームタウン アンドラ・ラ・ベリャホームスタジアム エスタディ・ナシオナル収容人数 3,306代表者 ジェラール・ピケ (90%) グルー�...