Transverse wave

Illustration of a simple (plane) transverse wave propagating through an elastic medium in the horizontal direction, with particles being displaced in the vertical direction. Only one layer of the material is shown
Illustration of the electric (red) and magnetic (blue) fields along a ray in a simple light wave. For any plane perpendicular to the ray, each field has always the same value at all points of the plane.
Propagation of a transverse spherical wave in a 2d grid (empirical model)

In physics, a transverse wave is a wave that oscillates perpendicularly to the direction of the wave's advance. In contrast, a longitudinal wave travels in the direction of its oscillations. All waves move energy from place to place without transporting the matter in the transmission medium if there is one.[1][2] Electromagnetic waves are transverse without requiring a medium.[3] The designation “transverse” indicates the direction of the wave is perpendicular to the displacement of the particles of the medium through which it passes, or in the case of EM waves, the oscillation is perpendicular to the direction of the wave.[4]

A simple example is given by the waves that can be created on a horizontal length of string by anchoring one end and moving the other end up and down. Another example is the waves that are created on the membrane of a drum. The waves propagate in directions that are parallel to the membrane plane, but each point in the membrane itself gets displaced up and down, perpendicular to that plane. Light is another example of a transverse wave, where the oscillations are the electric and magnetic fields, which point at right angles to the ideal light rays that describe the direction of propagation.

Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displacement of the solid particles away from their relaxed position, in directions perpendicular to the propagation of the wave. These displacements correspond to a local shear deformation of the material. Hence a transverse wave of this nature is called a shear wave. Since fluids cannot resist shear forces while at rest, propagation of transverse waves inside the bulk of fluids is not possible.[5] In seismology, shear waves are also called secondary waves or S-waves.

Transverse waves are contrasted with longitudinal waves, where the oscillations occur in the direction of the wave. The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves are called "primary waves", or "P-waves" in geophysics.

Water waves involve both longitudinal and transverse motions.[6]

Mathematical formulation

Mathematically, the simplest kind of transverse wave is a plane linearly polarized sinusoidal one. "Plane" here means that the direction of propagation is unchanging and the same over the whole medium; "linearly polarized" means that the direction of displacement too is unchanging and the same over the whole medium; and the magnitude of the displacement is a sinusoidal function only of time and of position along the direction of propagation.

The motion of such a wave can be expressed mathematically as follows. Let be the direction of propagation (a vector with unit length), and any reference point in the medium. Let be the direction of the oscillations (another unit-length vector perpendicular to d). The displacement of a particle at any point of the medium and any time t (seconds) will be where A is the wave's amplitude or strength, T is its period, v is the speed of propagation, and is its phase at t = 0 seconds at . All these parameters are real numbers. The symbol "•" denotes the inner product of two vectors.

By this equation, the wave travels in the direction and the oscillations occur back and forth along the direction . The wave is said to be linearly polarized in the direction .

An observer that looks at a fixed point will see the particle there move in a simple harmonic (sinusoidal) motion with period T seconds, with maximum particle displacement A in each sense; that is, with a frequency of f = 1/T full oscillation cycles every second. A snapshot of all particles at a fixed time t will show the same displacement for all particles on each plane perpendicular to , with the displacements in successive planes forming a sinusoidal pattern, with each full cycle extending along by the wavelength λ = v T = v/f. The whole pattern moves in the direction with speed V.

The same equation describes a plane linearly polarized sinusoidal light wave, except that the "displacement" S(, t) is the electric field at point and time t. (The magnetic field will be described by the same equation, but with a "displacement" direction that is perpendicular to both and , and a different amplitude.)

Superposition principle

In a homogeneous linear medium, complex oscillations (vibrations in a material or light flows) can be described as the superposition of many simple sinusoidal waves, either transverse or longitudinal.

The vibrations of a violin string create standing waves,[7] for example, which can be analyzed as the sum of many transverse waves of different frequencies moving in opposite directions to each other, that displace the string either up or down or left to right. The antinodes of the waves align in a superposition .

Circular polarization

If the medium is linear and allows multiple independent displacement directions for the same travel direction , we can choose two mutually perpendicular directions of polarization, and express any wave linearly polarized in any other direction as a linear combination (mixing) of those two waves.

By combining two waves with same frequency, velocity, and direction of travel, but with different phases and independent displacement directions, one obtains a circularly or elliptically polarized wave. In such a wave the particles describe circular or elliptical trajectories, instead of moving back and forth.

It may help understanding to revisit the thought experiment with a taut string mentioned above. Notice that you can also launch waves on the string by moving your hand to the right and left instead of up and down. This is an important point. There are two independent (orthogonal) directions that the waves can move. (This is true for any two directions at right angles, up and down and right and left are chosen for clarity.) Any waves launched by moving your hand in a straight line are linearly polarized waves.

But now imagine moving your hand in a circle. Your motion will launch a spiral wave on the string. You are moving your hand simultaneously both up and down and side to side. The maxima of the side to side motion occur a quarter wavelength (or a quarter of a way around the circle, that is 90 degrees or π/2 radians) from the maxima of the up and down motion. At any point along the string, the displacement of the string will describe the same circle as your hand, but delayed by the propagation speed of the wave. Notice also that you can choose to move your hand in a clockwise circle or a counter-clockwise circle. These alternate circular motions produce right and left circularly polarized waves.

To the extent your circle is imperfect, a regular motion will describe an ellipse, and produce elliptically polarized waves. At the extreme of eccentricity your ellipse will become a straight line, producing linear polarization along the major axis of the ellipse. An elliptical motion can always be decomposed into two orthogonal linear motions of unequal amplitude and 90 degrees out of phase, with circular polarization being the special case where the two linear motions have the same amplitude.

Circular polarization mechanically generated on a rubber thread, converted to linear polarization by a mechanical polarizing filter.

Power in a transverse wave in string

(Let the linear mass density of the string be μ.)

The kinetic energy of a mass element in a transverse wave is given by:

In one wavelength, kinetic energy

Using Hooke's law the potential energy in mass element

And the potential energy for one wavelength

So, total energy in one wavelength

Therefore average power is [8]

See also

References

  1. ^ "Transverse Waves". L.R. Ingersoll Physics Museum. Retrieved 2024-03-06.
  2. ^ "Explainer: Understanding waves and wavelengths". 2020-03-05. Retrieved 2024-03-06.
  3. ^ "Transverse Waves". www.memphis.edu. Retrieved 2024-03-06.
  4. ^ "Physics Tutorial: The Anatomy of a Wave". www.physicsclassroom.com. Retrieved 2024-03-06.
  5. ^ "Fluid Mechanics II: Viscosity and Shear stresses" (PDF).
  6. ^ "Longitudinal and Transverse Wave Motion".
  7. ^ University Physics, Vol. 1, Chapter 16.6, “Standing Waves and Resonance” University of Central Florida, https://pressbooks.online.ucf.edu/osuniversityphysics/chapter/16-6-standing-waves-and-resonance/.
  8. ^ "16.4 Energy and Power of a Wave - University Physics Volume 1 | OpenStax". openstax.org. 19 September 2016. Retrieved 2022-01-28.

Read other articles:

Tanggal dan waktu WU (UTC ±0)ekuinoks dan titik balik matahari di Bumi[1][2] peristiwa ekuinoks titik balik ekuinoks titik balik bulan Maret[3] Juni[4] September[5] Desember[6] tahun tanggal waktu tanggal waktu tanggal waktu tanggal waktu 2019 20 21:58 21 15:54 23 07:50 22 04:19 2020 20 03:50 20 21:43 22 13:31 21 10:03 2021 20 09:37 21 03:32 22 19:21 21 15:59 2022 20 15:33 21 09:14 23 01:04 21 21:48 2023 20 21:25 21 14:58 23 06:50 22 03:28 202...

 

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...

 

Thomas HovendenThe Last Moments of John Brown, 1882Naissance 28 décembre 1840DunmanwayDécès 14 août 1895 (à 54 ans)Plymouth MeetingNationalité américaineActivité PeintreFormation Académie américaine des beaux-artsMaître Alexandre CabanelMouvement École de Pont-AvenConjoint Helen Corson Hovenden (en)Signaturemodifier - modifier le code - modifier Wikidata Thomas Hovenden (28 décembre 1840 — 14 août 1895), est un peintre irlando-américain et un professeur. Il a peint des s...

العلاقات البولندية الوسط أفريقية بولندا جمهورية أفريقيا الوسطى   بولندا   جمهورية أفريقيا الوسطى تعديل مصدري - تعديل   العلاقات البولندية الوسط أفريقية هي العلاقات الثنائية التي تجمع بين بولندا وجمهورية أفريقيا الوسطى.[1][2][3][4][5] مقارنة ب�...

 

Fahri Hamzah Wakil Ketua Dewan Perwakilan Rakyat Bidang Kesejahteraan RakyatMasa jabatan2 Oktober 2014 – 1 Oktober 2019PresidenSusilo Bambang Yudhoyono Joko WidodoKetua DPRSetya NovantoAde KomarudinBambang Soesatyo PendahuluTaufik KurniawanPenggantiMuhaimin Iskandar Informasi pribadiLahir10 November 1971 (umur 52)Utan, Sumbawa, Nusa Tenggara Barat, IndonesiaPartai politikPKS (2004–2016)Gelora (2019–)Orang tuaH. Hamzah Ahmad[1] (ayah)Alma materUniversitas IndonesiaS...

 

Combination medication Dextromethorphan/bupropionDextromethorphanBupropionCombination ofDextromethorphanNMDA receptor antagonist, σ1 receptor agonist, serotonin-norepinephrine reuptake inhibitor, nicotinic acetylcholine receptor negative allosteric modulator, and other actionsBupropionNorepinephrine–dopamine reuptake inhibitor and nicotinic acetylcholine receptor negative allosteric modulatorClinical dataTrade namesAuvelityOther namesDXM/BUP; AXS-05License data US DailyMed: Dextr...

Eberhard KoebelEberhard Koebel circa 1930Born(1907-06-22)22 June 1907Stuttgart, GermanyDied31 August 1955(1955-08-31) (aged 48)Berlin, GermanyOccupation(s)Youth leader, writer, publisher, tent designer and Nazi resister. Eberhard Koebel also Eberhard Köbel, called tusk,[1] i.e., the German in the language of the Sámi people he traveled among,[2][3] (22 June 1907 – 31 August 1955) was a German youth leader, writer, and publisher. Eberhard Koebel was born in St...

 

Kitab Kells, ~ 800 M, ditulis dengan huruf-huruf yang dikenal berjenis insular majuscule, suatu variasi tulisan uncial yang berasal dari Irlandia. Uncial adalah jenis tulisan tangan yang seluruhnya menggunakan hanya huruf besar (Inggris: upper case, large letters, capital letters, capitals, caps, majuscule, upper-case, atau uppercase) yang umum digunakan dari abad ke-4 sampai ke-8 M[1] oleh para jurutulis untuk membuat naskah bahasa Latin dan bahasa Yunani Bizantin.[2] Hur...

 

You're Mine (Eternal)Lagu oleh Mariah Careydari album Me. I Am Mariah... The Elusive ChanteuseDirilis12 Februari 2014 (2014-02-12)FormatUnduh digitalPenyiaran radioDirekamRapture StudiosMetrocity StudiosJungle City StudiosStudio di PalmsGenreR&BDurasi3:44LabelDef JamPenciptaMariah CareyRodney JerkinsProduserCareyDarkchild You're Mine (Eternal) adalah lagu dari musisi ternama Amerika Serikat, Mariah Carey dari album studionya yang keempat belas, Me. I Am Mariah... The Elusive Chanteus...

American baseball player (born 1996) Baseball player Seth BeerBeer with the Fayetteville Woodpeckers in 2019Pittsburgh Pirates Outfielder / First basemanBorn: (1996-09-18) September 18, 1996 (age 27)Maryville, Illinois, U.S.Bats: LeftThrows: RightMLB debutSeptember 10, 2021, for the Arizona DiamondbacksMLB statistics (through 2022 season)Batting average.208Home runs2Runs batted in12 Teams Arizona Diamondbacks (2021–2022) Career highlights and awards Dick Howser Trophy (2...

 

Sinagoga Quai Kléber di StrasburgoSynagogue Consistoriale du quai Kléber de StrasbourgStato Francia LocalitàStrasburgo Coordinate48°35′07.18″N 7°44′31.61″E / 48.585329°N 7.742113°E48.585329; 7.742113Coordinate: 48°35′07.18″N 7°44′31.61″E / 48.585329°N 7.742113°E48.585329; 7.742113 ReligioneEbraismo ArchitettoLudwig Levy Stile architettoniconeoromanica Inizio costruzione1896 Completamento1898 Demolizione1940 Modifica dati su Wikid...

 

Untuk pengertian lain, lihat Utica. Lokasi Utica di negara bagian New York bagian utara Utica (bahasa Tuscarora: Yunę́ˀnare•θ) adalah sebuah kota yang terletak di negara bagian New York, Amerika Serikat. Utica adalah county seat (ibu kota) untuk Oneida County. Populasi dari masa ke masa [1] Tahunsensus Populasi 1840 12.782 1850 17.565 1860 22.529 1870 28.804 1880 33.914 1890 44.007 1900 56.383 1910 74.419 1920 94.156 1930 101.740 1940 100.518 1950 100.489 1960 100.410* 1970 91.611* 1980...

Ciccio Ingrassia nel 1967, in un fotogramma del film Il lungo, il corto, il gatto Francesco Ingrassia, detto Ciccio (Palermo, 5 ottobre 1922 – Roma, 28 aprile 2003), è stato un attore, comico, regista, sceneggiatore[1][2], conduttore televisivo e cantante italiano. Insieme a Franco Franchi formò il famoso duo comico Franco e Ciccio, entrato nella storia della cinematografia italiana.[3] La coppia girò più di 100 film tra gli anni sessanta e ottanta, e si distinse...

 

  لمعانٍ أخرى، طالع كلية الحقوق (توضيح). كلية الحقوق شعار كلية الحقوق (الجامعة الأردنية)شعار الكلية. مبنى الكلية. الشعار الحق يعلو ولا يُعلى عليه. معلومات التأسيس 1976 (منذ 48 سنة) النوع كلية جامعية حكومية الشُعب قسمان الموقع الجغرافي إحداثيات 32°01′07″N 35°52′20″E / 32.0...

 

Laguna Wattamola Koordinat: 34°08′15″S 151°07′04″E / 34.13750°S 151.11778°E / -34.13750; 151.11778 Wattamola, juga dikenal sebagai Pantai Wattamola, adalah sebuah teluk kecil, laguna, dan pantai di pesisir New South Wales, wilayah selatan Sydney, daerah ini termasuk dalam kawasan konservasi Royal National Park. Sejarah Wattamola adalah nama Aborigin untuk daerah tersebut, yang berarti tempat di dekat air mengalir.[1] Nama itu dicatat sebagai Watta-M...

SenateDominion of CeylonTypeTypeUpper house HistoryEstablished1947Disbanded2 October 1971Preceded byState Council of CeylonSucceeded byNoneSeats30Meeting placeThe old Legislative Council building in Colombo Fort that used to house the Senate. Today it is known as the Republic Building and houses the Ministry of Foreign Affairs. Politics of Sri Lanka Constitution Previous constitutions: 1931 · 1947 Law of Sri Lanka Human rights Law enforcement GovernmentExecutive President (List) Pr...

 

Ongoing COVID-19 viral pandemic in Syria COVID-19 pandemic in SyriaDiseaseCOVID-19Virus strainSARS-CoV-2First outbreakWuhan, Hubei, ChinaArrival date22 March 2020(4 years, 2 months, 3 weeks and 1 day)Confirmed cases• 57,743 (Government reported only) • 13,690 (needs update) (Including Interim Government and Rojava Administration reported cases)Active cases0Recovered54,578Deaths3,165Fatality rate5.80%TerritoriesАll 14 governorates (All government and non-government rep...

 

Mayu IshikawaNazionalità Giappone Altezza174 cm Pallavolo RuoloSchiacciatrice Squadra AGIL CarrieraGiovanili 2016-2019 Shimokitazawa Seitoku Squadre di club 2019-2023 Toray Arrows2023-2024 Firenze2024- AGIL Nazionale 2017 Giappone U-182019 Giappone U-202019- Giappone Palmarès  Campionato asiatico e oceaniano OroCorea del Sud 2019  Coppa del Mondo BronzoGiappone 2023 Statistiche aggiornate al 14 maggio 2024 Modifica dati su Wikidata ·...

City in North Yorkshire, England This article is about the city in England. For other uses, see Ripon (disambiguation). City in EnglandRiponCityClockwise from top left: the Market Place, Ripon Cathedral, Newby Hall, Fountains Abbey and the Cabmen's ShelterCoat of armsRiponLocation within North YorkshirePopulation16,702 (2011 census)[1]OS grid referenceSE312714• London227 mi (365 km) SSECivil parishRiponUnitary authorityNorth YorkshireCeremonia...

 

Derby CountyTên đầy đủDerby County Football ClubBiệt danhThe Rams The sheepThành lập5 tháng 2 năm 1884bởi William MorleySânPride Park, DerbySức chứa33,597Chủ tịch điều hànhAndrew ApplebyHuấn luyện viênLiam Rosenior (tạm quyền)[1][2]Giải đấuEFL League One2021–22EFL Championship, 23 trên 24 (xuống hạng)Trang webTrang web của câu lạc bộ Màu áo sân nhà Màu áo sân khách Màu áo thứ ba Mùa giải hiện nay Derby C...