Sound pressure

Sound measurements
Characteristic
Symbols
 Sound pressure p, SPL, LPA
 Particle velocity v, SVL
 Particle displacement δ
 Sound intensity I, SIL
 Sound power P, SWL, LWA
 Sound energy W
 Sound energy density w
 Sound exposure E, SEL
 Acoustic impedance Z
 Audio frequency AF
 Transmission loss TL

Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).[1]

Mathematical definition

Sound pressure diagram:
  1. Silence
  2. Audible sound
  3. Atmospheric pressure
  4. Sound pressure

A sound wave in a transmission medium causes a deviation (sound pressure, a dynamic pressure) in the local ambient pressure, a static pressure.

Sound pressure, denoted p, is defined by where

  • ptotal is the total pressure,
  • pstat is the static pressure.

Sound measurements

Sound intensity

In a sound wave, the complementary variable to sound pressure is the particle velocity. Together, they determine the sound intensity of the wave.

Sound intensity, denoted I and measured in W·m−2 in SI units, is defined by where

  • p is the sound pressure,
  • v is the particle velocity.

Acoustic impedance

Acoustic impedance, denoted Z and measured in Pa·m−3·s in SI units, is defined by[2] where

  • is the Laplace transform of sound pressure,[citation needed]
  • is the Laplace transform of sound volume flow rate.

Specific acoustic impedance, denoted z and measured in Pa·m−1·s in SI units, is defined by[2] where

  • is the Laplace transform of sound pressure,
  • is the Laplace transform of particle velocity.

Particle displacement

The particle displacement of a progressive sine wave is given by where

It follows that the particle velocity and the sound pressure along the direction of propagation of the sound wave x are given by where

  • vm is the amplitude of the particle velocity,
  • is the phase shift of the particle velocity,
  • pm is the amplitude of the acoustic pressure,
  • is the phase shift of the acoustic pressure.

Taking the Laplace transforms of v and p with respect to time yields

Since , the amplitude of the specific acoustic impedance is given by

Consequently, the amplitude of the particle displacement is related to that of the acoustic velocity and the sound pressure by

Inverse-proportional law

When measuring the sound pressure created by a sound source, it is important to measure the distance from the object as well, since the sound pressure of a spherical sound wave decreases as 1/r from the centre of the sphere (and not as 1/r2, like the sound intensity):[3]

This relationship is an inverse-proportional law.

If the sound pressure p1 is measured at a distance r1 from the centre of the sphere, the sound pressure p2 at another position r2 can be calculated:

The inverse-proportional law for sound pressure comes from the inverse-square law for sound intensity: Indeed, where

hence the inverse-proportional law:

Sound pressure level

Sound pressure level (SPL) or acoustic pressure level (APL) is a logarithmic measure of the effective pressure of a sound relative to a reference value.

Sound pressure level, denoted Lp and measured in dB,[4] is defined by:[5] where

  • p is the root mean square sound pressure,[6]
  • p0 is a reference sound pressure,
  • 1 Np is the neper,
  • 1 B = (1/2 ln 10) Np is the bel,
  • 1 dB = (1/20 ln 10) Np is the decibel.

The commonly used reference sound pressure in air is[7]

p0 = 20 μPa,

which is often considered as the threshold of human hearing (roughly the sound of a mosquito flying 3 m away). The proper notations for sound pressure level using this reference are Lp/(20 μPa) or Lp (re 20 μPa), but the suffix notations dB SPL, dB(SPL), dBSPL, or dBSPL are very common, even if they are not accepted by the SI.[8]

Most sound-level measurements will be made relative to this reference, meaning 1 Pa will equal an SPL of . In other media, such as underwater, a reference level of 1 μPa is used.[9] These references are defined in ANSI S1.1-2013.[10]

The main instrument for measuring sound levels in the environment is the sound level meter. Most sound level meters provide readings in A, C, and Z-weighted decibels and must meet international standards such as IEC 61672-2013.

Examples

The lower limit of audibility is defined as SPL of 0 dB, but the upper limit is not as clearly defined. While 1 atm (194 dB peak or 191 dB SPL)[11][12] is the largest pressure variation an undistorted sound wave can have in Earth's atmosphere (i. e., if the thermodynamic properties of the air are disregarded; in reality, the sound waves become progressively non-linear starting over 150 dB), larger sound waves can be present in other atmospheres or other media, such as underwater or through the Earth.[13]

Equal-loudness contour, showing sound-pressure-vs-frequency at different perceived loudness levels

Ears detect changes in sound pressure. Human hearing does not have a flat spectral sensitivity (frequency response) relative to frequency versus amplitude. Humans do not perceive low- and high-frequency sounds as well as they perceive sounds between 3,000 and 4,000 Hz, as shown in the equal-loudness contour. Because the frequency response of human hearing changes with amplitude, three weightings have been established for measuring sound pressure: A, B and C.

In order to distinguish the different sound measures, a suffix is used: A-weighted sound pressure level is written either as dBA or LA. B-weighted sound pressure level is written either as dBB or LB, and C-weighted sound pressure level is written either as dBC or LC. Unweighted sound pressure level is called "linear sound pressure level" and is often written as dBL or just L. Some sound measuring instruments use the letter "Z" as an indication of linear SPL.[13]

Distance

The distance of the measuring microphone from a sound source is often omitted when SPL measurements are quoted, making the data useless, due to the inherent effect of the inverse proportional law. In the case of ambient environmental measurements of "background" noise, distance need not be quoted, as no single source is present, but when measuring the noise level of a specific piece of equipment, the distance should always be stated. A distance of one metre (1 m) from the source is a frequently used standard distance. Because of the effects of reflected noise within a closed room, the use of an anechoic chamber allows sound to be comparable to measurements made in a free field environment.[13]

According to the inverse proportional law, when sound level Lp1 is measured at a distance r1, the sound level Lp2 at the distance r2 is

Multiple sources

The formula for the sum of the sound pressure levels of n incoherent radiating sources is

Inserting the formulas in the formula for the sum of the sound pressure levels yields

Examples of sound pressure

Examples of sound pressure in air at standard atmospheric pressure
Source of sound Distance Sound pressure level[a]
(Pa) (dBSPL)
Shock wave (distorted sound waves > 1 atm; waveform valleys are clipped at zero pressure)[11][12] >1.01×105 >191
Simple open-ended thermoacoustic device[14] [clarification needed] 1.26×104 176
1883 eruption of Krakatoa[15][16] 165 km 172
.30-06 rifle being fired m to
shooter's side
7.09×103 171
Firecracker[17] 0.5 m 7.09×103 171
Stun grenade[18] Ambient 1.60×103
...8.00×103
158–172
9-inch (23 cm) party balloon inflated to rupture[19] At ear 4.92×103 168
9-inch (23 cm) diameter balloon crushed to rupture[19] At ear 1.79×103 159
9-inch (23 cm) party balloon inflated to rupture[19] 0.5 m 1.42×103 157
9-inch (23 cm) diameter balloon popped with a pin[19] At ear 1.13×103 155
LRAD 1000Xi Long Range Acoustic Device[20] 1 m 8.93×102 153
9-inch (23 cm) party balloon inflated to rupture[19] 1 m 731 151
Jet engine[13] 1 m 632 150
9-inch (23 cm) diameter balloon crushed to rupture[19] 0.95 m 448 147
9-inch (23 cm) diameter balloon popped with a pin[19] 1 m 282.5 143
Loudest human voice[21] 1 inch 110 135
Trumpet[22] 0.5 m 63.2 130
Vuvuzela horn[23] 1 m 20.0 120
Threshold of pain[24][25][21] At ear 20–200 120–140
Risk of instantaneous noise-induced hearing loss At ear 20.0 120
Jet engine 100–30 m 6.32–200 110–140
Two-stroke chainsaw[26] 1 m 6.32 110
Jackhammer 1 m 2.00 100
Traffic on a busy roadway (combustion engines) 10 m 0.20–0.63 80–90
Hearing damage (over long-term exposure, need not be continuous)[27] At ear 0.36 85
Passenger car (combustion engine) 10 m 0.02–0.20 60–80
Traffic on a busy roadway (electric vehicles) [28] 10 m 0.20–0.63 65-75
EPA-identified maximum to protect against hearing loss and other disruptive effects from noise, such as sleep disturbance, stress, learning detriment, etc.[29] Ambient 0.06 70
TV (set at home level) 1 m 0.02 60
Normal conversation 1 m 2×10−3–0.02 40–60
Passenger car (electric) [30] 10 m 0.02–0.20 38-48
Very calm room Ambient 2.00×10−4
...6.32×10−4
20–30
Light leaf rustling, calm breathing[13] Ambient 6.32×10−5 10
Auditory threshold at 1 kHz[27] At ear 2.00×10−5 0
Anechoic chamber, Orfield Labs, A-weighted[31][32] Ambient 6.80×10−6 −9.4
Anechoic chamber, University of Salford, A-weighted[33] Ambient 4.80×10−6 −12.4
Anechoic chamber, Microsoft, A-weighted[34][35] Ambient 1.90×10−6 −20.35
  1. ^ All values listed are the effective sound pressure unless otherwise stated.

See also

  • Acoustics – Branch of physics involving mechanical waves
  • Phon – Logarithmic unit of loudness level
  • Loudness – Subjective perception of sound pressure
  • Sone – Unit of perceived loudness
  • Sound level meter – Device for acoustic measurements
  • Stevens's power law – Empirical relationship between actual and perceived changed intensity of stimulus
  • Weber–Fechner law – Related laws in the field of psychophysics

References

  1. ^ "Sound Pressure Is the Force of Sound on a Surface Area Perpendicular to the Direction of the Sound". Retrieved 22 April 2015.
  2. ^ a b Wolfe, J. "What is acoustic impedance and why is it important?". University of New South Wales, Dept. of Physics, Music Acoustics. Retrieved 1 January 2014.
  3. ^ Longhurst, R. S. (1967). Geometrical and Physical Optics. Norwich: Longmans.
  4. ^ "Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, and their units", IEC 60027-3 Ed. 3.0, International Electrotechnical Commission, 19 July 2002.
  5. ^ Attenborough K, Postema M (2008). A Pocket-Sized Introduction to Acoustics. Kingston upon Hull: The University of Hull. doi:10.5281/zenodo.7504060. ISBN 978-90-812588-2-1.
  6. ^ Bies, David A.; Hansen, Colin (2003). Engineering Noise Control.
  7. ^ Ross Roeser, Michael Valente, Audiology: Diagnosis (Thieme 2007), p. 240.
  8. ^ Thompson, A. and Taylor, B. N. Sec. 8.7: "Logarithmic quantities and units: level, neper, bel", Guide for the Use of the International System of Units (SI) 2008 Edition, NIST Special Publication 811, 2nd printing (November 2008), SP811 PDF.
  9. ^ Morfey, Christopher L. (2001). Dictionary of Acoustics. San Diego: Academic Press. ISBN 978-0125069403.
  10. ^ "Noise Terms Glossary". Retrieved 2012-10-14.
  11. ^ a b Self, Douglas (2020-04-17). Small Signal Audio Design. CRC Press. ISBN 978-1-000-05044-8. this limit is reached when the rarefaction creates a vacuum, because you can't have a lower pressure than that. This corresponds to about +194 dB SPL.
  12. ^ a b Guignard, J. C.; King, P.F.; North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development Aerospace Medical Panel (1972). Aeromedical Aspects of Vibration and Noise. North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development. In air at an assumed atmospheric pressure of 1 bar (100,000 N/m2) this occurs theoretically at approximately 191 dB SPL (working with rms values
  13. ^ a b c d e Winer, Ethan (2013). "1". The Audio Expert. New York and London: Focal Press. ISBN 978-0-240-82100-9.
  14. ^ HATAZAWA, Masayasu; SUGITA, Hiroshi; OGAWA, Takahiro; SEO, Yoshitoki (2004-01-01). "Performance of a Thermoacoustic Sound Wave Generator driven with Waste Heat of Automobile Gasoline Engine". Transactions of the Japan Society of Mechanical Engineers B. 70 (689): 292–299. doi:10.1299/kikaib.70.292. ISSN 0387-5016.
  15. ^ "Krakatoa Eruption – The Loudest Sound". Brüel & Kjær. Retrieved 2021-03-24. 160 km (99 miles) away from the source, registered a sound pressure level spike of more than 2½ inches of mercury (8.5 kPa), equivalent to 172 decibels.
  16. ^ Winchester, Simon (2003). Krakatoa: The Day the World Exploded, August 27, 1883. Penguin/Viking. p. 218. ISBN 978-0-670-91430-2.
  17. ^ Flamme, Gregory A.; Liebe, Kevin; Wong, Adam (2009). "Estimates of the auditory risk from outdoor impulse noise I: Firecrackers". Noise and Health. 11 (45): 223–230. doi:10.4103/1463-1741.56216. ISSN 1463-1741. PMID 19805932.
  18. ^ Brueck, Scott E.; Kardous, Chuck A.; Oza, Aalok; Murphy, William J. (2014). "NIOSH HHE Report No. 2013-0124-3208. Health hazard evaluation report: measurement of exposure to impulsive noise at indoor and outdoor firing ranges during tactical training exercises" (PDF). Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
  19. ^ a b c d e f g "Did You Know How Loud Balloons Can Be?". Canadian Audiologist. 3 (6). 9 January 2014. Retrieved 8 June 2018.
  20. ^ "LRAD Corporation Product Overview for LRAD 1000Xi". Archived from the original on 16 March 2014. Retrieved 29 May 2014.
  21. ^ a b Realistic Maximum Sound Pressure Levels for Dynamic MicrophonesShure.
  22. ^ Recording Brass & Reeds.
  23. ^ Swanepoel, De Wet; Hall III, James W.; Koekemoer, Dirk (February 2010). "Vuvuzela – good for your team, bad for your ears" (PDF). South African Medical Journal. 100 (4): 99–100. doi:10.7196/samj.3697 (inactive 2024-11-10). hdl:2263/13136. PMID 20459912.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  24. ^ Nave, Carl R. (2006). "Threshold of Pain". HyperPhysics. SciLinks. Retrieved 2009-06-16.
  25. ^ Franks, John R.; Stephenson, Mark R.; Merry, Carol J., eds. (June 1996). Preventing Occupational Hearing Loss – A Practical Guide (PDF). National Institute for Occupational Safety and Health. p. 88. Retrieved 2009-07-15.
  26. ^ "Decibel Table – SPL – Loudness Comparison Chart". sengpielaudio. Retrieved 5 Mar 2012.
  27. ^ a b Hamby, William. "Ultimate Sound Pressure Level Decibel Table". Archived from the original on 2005-10-19.
  28. ^ Nicolas Misdariis, Louis-Ferdinand Pardo (Aug 2017), The sound of silence of electric vehicles – Issues and answers, InterNoise, HAL Open Science, Hong-Kong, China, retrieved May 2, 2024
  29. ^ "EPA Identifies Noise Levels Affecting Health and Welfare" (Press release). Environmental Protection Agency. April 2, 1974. Retrieved March 27, 2017.
  30. ^ Nicolas Misdariis, Louis-Ferdinand Pardo (Aug 2017). "The sound of silence of electric vehicles – Issues and answers". InterNoise, HAL Open Science, Hong-Kong, China. Retrieved May 2, 2024.
  31. ^ "'The Quietest Place on Earth' – Guinness World Records Certificate, 2005" (PDF). Orfield Labs.
  32. ^ Middlemiss, Neil (December 18, 2007). "The Quietest Place on Earth – Orfield Labs". Audio Junkies. Archived from the original on 2010-11-21.
  33. ^ Eustace, Dave. "Anechoic Chamber". University of Salford. Archived from the original on 2019-03-04.
  34. ^ "Microsoft Lab Sets New Record for the World's Quietest Place". 2015-10-02. Retrieved 2016-09-20. The computer company has built an anechoic chamber in which highly sensitive tests reported an average background noise reading of an unimaginably quiet −20.35 dBA (decibels A-weighted).
  35. ^ "Check Out the World's Quietest Room". Microsoft: Inside B87. Retrieved 2016-09-20.
General
  • Beranek, Leo L., Acoustics (1993), Acoustical Society of America, ISBN 0-88318-494-X.
  • Daniel R. Raichel, The Science and Applications of Acoustics (2006), Springer New York, ISBN 1441920803.

Read other articles:

Mohammad RasjadBiografiKelahiran29 November 1866 Koto Gadang Kematian17 September 1929 (62 tahun)Medan Tempat pemakamanMasjid Raya Medan Data pribadiKelompok etnikOrang Minangkabau KegiatanPekerjaanJaksa dan panitera KeluargaPasangan nikahTupin Kiam (1884–)Asiah (1897–)Siti Rabiah (1898–) AnakRohana KudusSutan SyahrirPoeti Siti SjahrizadRadenaSoetan SoeleimansjahMahroezarSoetan NoeralamsjahAzran St. PalindihSoetan SjahsamSaleha (en) Orang tuaLeman Sutan Palindih , Boent...

 

Fernand Bonnier de La ChapelleLahir(1922-11-04)4 November 1922Algiers, Aljazair PrancisMeninggal26 Desember 1942(1942-12-26) (umur 20)Aljir, Aljazair PrancisKebangsaanperancisDikenal atasPembunuhan François Darlan Fernand Bonnier de La Chapelle (4 November 1922 – 26 Desember 1942)[1] adalah anggota royalis dari perlawanan Prancis selama Perang Dunia II. Dia membunuh Laksamana Armada François Darlan, mantan kepala pemerintahan Prancis Vichy dan komisaris tinggi ...

 

Djoehana WiradikartaProf. dr. R. M. Djoehana Wiradikarta Presidium Institut Teknologi Bandung ke-1Masa jabatan2 Maret 1959 – 1 November 1959Menjabat bersama Goenarso, Soemono, Soetedjo & Soemantri Brodjonegoro PendahuluPeriode FT & FIPIA UI BandungPenggantiProf. Ir. R. O. Kosasih Informasi pribadiLahir(1896-09-18)18 September 1896Bandung, Hindia BelandaMeninggal1986 (umur 90)IndonesiaKebangsaanIndonesiaAlma materSchool tot Opleiding van Inlandsche ArtsenUniversi...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يشمل تاريخ الطب في الولايات المتحدة مجموعة متنوعة من الفترات والمناهج المتعلقة بالرعاية الصحية في الولايات المتحدة من أيام الاستعمار إلى الوقت الحاضر، والتي تتراوح من علاج�...

 

Vasodilating drug Chemical structure of sildenafil (Viagra), the prototypical PDE5 inhibitor A phosphodiesterase type 5 inhibitor (PDE5 inhibitor) is a vasodilating drug that works by blocking the degradative action of cGMP-specific phosphodiesterase type 5 (PDE5) on cyclic GMP in the smooth muscle cells lining the blood vessels supplying various tissues. These drugs dilate the corpora cavernosa of the penis, facilitating erection with sexual stimulation, and are used in the treatment of erec...

 

Untuk kapal lain dengan nama serupa, lihat Kapal penjelajah Jepang Tone. Tone mengarungi lautan Sejarah Kekaisaran Jepang Nama ToneAsal nama Sungai ToneDipesan 1932 (Tahun Fiskal)Pasang lunas 1 Desember 1934Diluncurkan 21 November 1937Selesai 1938Mulai berlayar 20 November 1938[1]Dicoret 20 November 1945Nasib Tenggelam 24 Juli 1945 oleh kapal induk USN di Kure, Hiroshima 34°14′N 132°30′E / 34.233°N 132.500°E / 34.233; 132.500Koordinat: 34°14′N 132°3...

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

 

Air Force Civil Engineer CenterAir Force Civil Engineer Center emblemActive1 October 2012 - presentCountryUnited StatesBranchUnited States Air ForcePart ofAir Force Installation and Mission Support CenterGarrison/HQJoint Base San AntonioCommandersCurrentcommanderBrig Gen William H. Kale IIIMilitary unit The Air Force Civil Engineer Center (AFCEC), located at Joint Base San Antonio-Lackland, Texas, is a 1,900-person primary subordinate unit, assigned to the Air Force Installation and Mis...

 

Grand Duchess of Russia For other people with the same name, see Grand Duchess Olga of Russia. In this name that follows Eastern Slavic naming customs, the patronymic is Nikolaevna and the family name is Romanova. Grand Duchess Olga NikolaevnaPhoto, c. 1914Born15 November [O.S. 3 November] 1895Alexander Palace, Tsarskoye Selo, Saint Petersburg Governorate, Russian EmpireDied17 July 1918(1918-07-17) (aged 22)Ipatiev House, Yekaterinburg, Russian Soviet RepublicBurial...

Ideas from Mathematics have been used as inspiration for fiber arts A Möbius strip scarf made from crochet. Ideas from mathematics have been used as inspiration for fiber arts including quilt making, knitting, cross-stitch, crochet, embroidery and weaving. A wide range of mathematical concepts have been used as inspiration including topology, graph theory, number theory and algebra. Some techniques such as counted-thread embroidery are naturally geometrical; other kinds of textile provide a ...

 

Launch pad at Kourou Space Centre, French Guiana Ensemble de Lancement Ariane 4Panoramic view of ELA-4Launch siteCentre Spatial Guyanais (CSG)Location5°15′54″N 52°47′31″W / 5.265°N 52.792°W / 5.265; -52.792Time zoneUTC−03 (GFT)Short nameELA-4EstablishedSeptember 2021; 2 years ago (2021-09)OperatorArianespace · ESATotal launches0Launch pad(s)1Launch historyStatusActiveFirst launchQ4 2023Ariane 6 / Multiple Rideshar...

 

جبال جوليسمعلومات عامةالبلد  الصومال صوماليلاند المكان توغدير الجغرافياالإحداثيات 9°52′N 44°55′E / 9.87°N 44.92°E / 9.87; 44.92 الارتفاع 1٬371 متر علم الأرضالنوع سلسلة جبلية تعديل - تعديل مصدري - تعديل ويكي بيانات جبال جوليس (بالصومالية: Buuraha Goolis)‏ او سلسلة جبال جوليس،[...

Inaugural issue of Freedom's Journal, published on Varick Street in Manhattan in 1827. This is a list of African American newspapers that have been published in the state of New York. It includes both current and historical newspapers. New York was the birthplace of the African American press, with the publication of Freedom's Journal in 1827, and has remained a vibrant center of publishing ever since. Newspapers Upstate An 1856 issue of The North Star, published at Rochester. For the purpos...

 

Railway station in Ibusuki, Kagoshima Prefecture, Japan Nishi-Ōyama Station西大山駅Marker of Nishi-Ōyama Station being the southernmost station of JR Group, with Kaimon-dake in the background, December 2017General informationLocation602 Yamakawa Ōyama, Ibusuki City, Kagoshima PrefectureJapanOperated by JR KyushuLine(s)     Ibusuki Makurazaki LinePlatforms1 side platformTracks1ConstructionStructure typeAt gradeHistoryOpened22 March 1960; 64 years ago...

 

2003 Slovak European Union membership referendum 16 and 17 May 2003 Do you agree with the Slovak Republic becoming a member state of the European Union?Results Choice Votes % Yes 2,012,870 93.71% No 135,031 6.29% Valid votes 2,147,901 98.74% Invalid or blank votes 27,488 1.26% Total votes 2,175,389 100.00% Registered voters/turnout 4,174,097 52.12% Politics of Slovakia National symbols Anthem Coat of arms Flag Seal Constitution Constitution of Slovakia Constitutional Court Executive Presiden...

Voce principale: Lipton Championships 1995. Lipton Championships 1995Singolare femminileSport Tennis Detentricedel titolo Steffi Graf Vincitrice Steffi Graf Finalista Kimiko Date Punteggio6–1, 6–4 Tornei Singolare uomini donne   Doppio uomini donne 1994 1996 Il singolare del Lipton Championships 1995 è stato un torneo di tennis facente parte del WTA Tour 1995. Steffi Graf era la detentrice del titolo e ha battuto in finale 6–1, 6–4 Kimiko Date. Indice 1 Teste di serie 2 Tabello...

 

Sports team that is financed and run by a manufacturer or other organization in a broad sense For the motorsports term, see Factory-backed. Players of PSV posing with the European Cup together with Frits Philips, chairman of the BOD of Philips, after their 1988 European Cup Final victory over Benfica in Stuttgart A works team, sometimes also referred to as factory team and company team, is a sports team that is financed and run by a manufacturer or other business, institution, or organization...

 

Pour les articles homonymes, voir Séré.  Raymond Adolphe Séré de Rivières Portrait de Raymond Adolphe Séré de Rivières. Naissance 20 mai 1815Albi, France Décès 16 février 1895 (à 79 ans)6e arrondissement de Paris Origine Française Allégeance France Arme Génie militaire Grade Général de brigade Années de service 1835 – 1880 Commandement 2e corps d'armée Distinctions Grand officier de la Légion d'honneur Autres fonctions Ingénieur militaire modifier&#...

1997 studio album by SWVRelease Some TensionStudio album by SWVReleasedJuly 29, 1997 (1997-07-29)Recorded1996–1997Genre R&B[1] soul[2] pop[2] hip hop soul[2][3] Length53:15LabelRCAProducer Sean Puffy Combs Roderick Majesty Wiggins Malik Pendleton The Characters Timbaland Brian Alexander Morgan Deric D-Dot Angelettie Marc Kinchen K. Perez A.O Perez SWV chronology New Beginning(1996) Release Some Tension(1997) A Special Christ...

 

Armand ConsidèreBiographieNaissance 8 juin 1841Port-sur-SaôneDécès 3 août 1914 (à 73 ans)6e arrondissement de ParisNationalité françaiseFormation École polytechniqueActivités Ingénieur, ingénieur civilAutres informationsMembre de Académie des sciences (1892)Personne liée Henry LossierŒuvres principales Critère de Considère (d)modifier - modifier le code - modifier Wikidata Armand Considère, né le 8 juin 1841 à Port-sur-Saône (Haute-Saône) et mort le 3 août 1914 à ...