Trial division

Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer n, the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n.

For example, to find the prime factors of n = 70, one can try to divide 70 by successive primes: first, 70 / 2 = 35; next, neither 2 nor 3 evenly divides 35; finally, 35 / 5 = 7, and 7 is itself prime. So 70 = 2 × 5 × 7.

Trial division was first described by Fibonacci in his book Liber Abaci (1202).[1]

Method

Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on. With this ordering, there is no point in testing for divisibility by four if the number has already been determined not divisible by two, and so on for three and any multiple of three, etc. Therefore, the effort can be reduced by selecting only prime numbers as candidate factors. Furthermore, the trial factors need go no further than because, if n is divisible by some number p, then n = p × q and if q were smaller than p, n would have been detected earlier as being divisible by q or by a prime factor of q.

A definite bound on the prime factors is possible. Suppose Pi is the i'th prime, so that P1 = 2, P2 = 3, P3 = 5, etc. Then the last prime number worth testing as a possible factor of n is Pi where P2i + 1 > n; equality here would mean that Pi + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the square of the next prime is 49, and below n = 25 just 2 and 3 are sufficient. Should the square root of n be an integer, then it is a factor and n is a perfect square.

An example of the trial division algorithm, using successive integers as trial factors, is as follows (in Python):

def trial_division(n: int) -> list[int]:
    """Return a list of the prime factors for a natural number."""
    a = []               # Prepare an empty list.
    f = 2                # The first possible factor.    
    while f*f <= n:      # While f is no larger than the square root of n ...
        if n % f == 0:   # The remainder of n divided by f might be zero.        
            a.append(f)  # If so, it divides n. Add f to the list.
            n //= f      # Divide that factor out of n.
        else:            # But if f is not a factor of n,
            f += 1       # Add one to f and try again.
    if n != 1:
        a.append(n)      # Add the remaining prime n to the list
    return a             # Prime factors may be repeated: 12 factors to 2,2,3.

This version tests every integer up to the square root of n, not just primes. A more complicated implementation only testing primes would be significantly faster in the worst case.

Speed

In the worst case, trial division is a laborious algorithm. For a base-2 n digit number a, if it starts from two and works up only to the square root of a, the algorithm requires

trial divisions, where denotes the prime-counting function, the number of primes less than x. This does not take into account the overhead of primality testing to obtain the prime numbers as candidate factors. A useful table need not be large: P(3512) = 32749, the last prime that fits into a sixteen-bit signed integer and P(6542) = 65521 for unsigned sixteen-bit integers. That would suffice to test primality for numbers up to 655372 = 4,295,098,369. Preparing such a table (usually via the Sieve of Eratosthenes) would only be worthwhile if many numbers were to be tested. If instead a variant is used without primality testing, but simply dividing by every odd number less than the square root the base-2 n digit number a, prime or not, it can take up to about:

In both cases, the required time grows exponentially with the digits of the number.

Even so, this is a quite satisfactory method, considering that even the best-known algorithms have exponential time growth. For a chosen uniformly at random from integers of a given length, there is a 50% chance that 2 is a factor of a and a 33% chance that 3 is a factor of a, and so on. It can be shown that 88% of all positive integers have a factor under 100 and that 92% have a factor under 1000. Thus, when confronted by an arbitrary large a, it is worthwhile to check for divisibility by the small primes, since for , in base-2 .

However, many-digit numbers that do not have factors in the small primes can require days or months to factor with the trial division. In such cases other methods are used such as the quadratic sieve and the general number field sieve (GNFS). Because these methods also have superpolynomial time growth a practical limit of n digits is reached very quickly. For this reason, in public key cryptography, values for a are chosen to have large prime factors of similar size so that they cannot be factored by any publicly known method in a useful time period on any available computer system or computer cluster such as supercomputers and computer grids. The largest cryptography-grade number that has been factored is RSA-250, a 250-digit number, using the GNFS and resources of several supercomputers. The running time was 2700 core years.

References

  1. ^ Mollin, Richard A. (2002). "A brief history of factoring and primality testing B. C. (before computers)". Mathematics Magazine. 75 (1): 18–29. doi:10.2307/3219180. JSTOR 3219180. MR 2107288.

Read other articles:

Father TedTangkapan layar dari kredit pembukaanGenreKomedi situasiPembuat Graham Linehan Arthur Mathews Ditulis oleh Graham Linehan Arthur Mathews Sutradara Declan Lowney Graham Linehan Andy De Emmony Pemeran Dermot Morgan Ardal O'Hanlon Frank Kelly Pauline McLynn Lagu pembukaSongs of Love (instrumental)Penata musikThe Divine ComedyNegara asalBritania RayaBahasa asliInggrisJmlh. seri3Jmlh. episode25 (daftar episode)ProduksiProduser eksekutifMary BellProduser Geoffrey Perkins Lissa Evan...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Jogja-NETPAC Asian Film Festival ke-15Film pembukaMekong 2030oleh Anocha Suwichakornpong, Pham Ngoc Lan, Kulikar Sotho, Anysay Keola, dan Sai Naw KhamFilm penutupYou and Ioleh Fanny ChotimahLokasiKota Yogyakarta, Daerah Istimewa YogyakartaDimulai2006Ju...

 

Socialist state in Eurasia, 1922–1991 Several terms redirect here. For other uses, see USSR (disambiguation), CCCP (disambiguation), and Soviet (disambiguation). For the area sometimes called Soviet Russia, see Russian Soviet Federative Socialist Republic. For other uses, see Soviet Russia (disambiguation). Union of Soviet Socialist RepublicsСоюз Советских Социалистических РеспубликSoyuz Sovyetskikh Sotsialisticheskikh Respublik(in Russi...

العلاقات المجرية الباكستانية المجر باكستان   المجر   باكستان تعديل مصدري - تعديل   العلاقات المجرية الباكستانية هي العلاقات الثنائية التي تجمع بين المجر وباكستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...

 

Indigenous language of the central Andes of South America This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Southern Quechua – news · newspapers · books · scholar · JSTOR (February 2007) (Learn how and when to remove this template message) Southern QuechuaQuechua II-CQhichwaPronunciationQuechua pronunciation: ...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. National Enrichment Facility (NEF) adalah pabrik untuk pengayaan dari uranium. Pabrik tersebut menggunakan teknologi sentrifugal gas yang dikenal sebagai sentrifugal tipe Zippe. Terletak 5 mil (8,0 km) timur Eunice, New Mexico. NEF dioperasikan ol...

 

Initial officer training establishment of the British Royal NavyNot to be confused with Dartmouth College. Britannia Royal Naval College, DartmouthMottoTo deliver courageous leaders with the spirit to fight and winTypeNaval academyEstablished1863 (1863) (HMS Britannia)Parent institutionDirector People and TrainingAffiliationRoyal NavyCommanding officerCaptain Andrew BrayLocationDartmouth, Devon, United KingdomWebsiteroyalnavy.mod.uk/brnc-dartmouth His Majesty'sNaval Serviceof the British...

 

Bakteri lipofilik adalah sejenis bakteri yang memiliki lipofilisitas, dapat berkembang biak dalam lipid (zat lemak yang tidak larut dalam air, tetapi umumnya larut dalam alkohol dan eter). Risiko kesehatan Kebanyakan material/perlengkapan di laboratorium dan pusat kesehatan memiliki sejumlah kecil lipid pada permukaan bakteri ini dan dengan demikian dapat mendukung proliferasi bakteri lipofilik,[1] tetapi karena bakteri ini tidak patogenik,[2] hal tersebut bukan merupakan suat...

Neuhütten Lambang kebesaranLetak Neuhütten NegaraJermanNegara bagianBayernWilayahUnterfrankenKreisMain-SpessartMunicipal assoc.Partenstein Pemerintahan • MayorEdmund Wirzberger (CSU)Luas • Total5,95 km2 (230 sq mi)Ketinggian270 m (890 ft)Populasi (2013-12-31)[1] • Total1.175 • Kepadatan2,0/km2 (5,1/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97843Kode area telepon06020Pelat kendaraanMSPSitus webwww.ne...

 

County in Illinois, United States County in IllinoisGreene CountyCountyGreene County CourthouseLocation within the U.S. state of IllinoisIllinois's location within the U.S.Coordinates: 39°21′N 90°23′W / 39.35°N 90.39°W / 39.35; -90.39Country United StatesState IllinoisFounded1821Named forNathanael GreeneSeatCarrolltonLargest cityCarrolltonArea • Total546 sq mi (1,410 km2) • Land543 sq mi (1,410 km2...

 

Bolt action sniper rifle Rifle, Caliber 7.62 mm, Sniper Weapon System, M24 The M24 rifleTypeSniper riflePlace of originUnited StatesService historyIn service1988–presentUsed bySee UsersWarsSalvadoran Civil WarGulf WarWar in AfghanistanIraq WarSyrian Civil War[1]War in Iraq (2014–2017)[2]Production historyDesigned1988ManufacturerRemington ArmsProduced1988 – unknownVariantsM24A2, M24A3, M24E1SpecificationsMass5.4 kg (12 lb) empty, without scop...

Martín Demichelis Informasi pribadiNama lengkap Martín Gastón DemichelisTanggal lahir 20 Desember 1980 (umur 43)Tempat lahir Justiniano Posse, ArgentinaTinggi 1,84 m (6 ft 0 in)Posisi bermain Bek tengahKarier junior0000–1995 Complejo Deportivo1995–1998 Club Renato Cesarini1998–2000 River PlateKarier senior*Tahun Tim Tampil (Gol)2000–2003 River Plate 51 (1)2003–2010 Bayern Munich 174 (13)2004 Bayern Munich II 1 (0)2011–2013 Málaga 84 (7)2013 Atlético Madri...

 

Koenraad Elst (lahir 7 Agustus 1959) adalah seorang aktivis Hindutva sayap kanan. Biasanya dikenal karena mendukung teori Keluar India dan karena menerbitkan sastra anti-Islam,[1] Elst menjadi bahan kritikan besar oleh para akademisi. Bibliografi Ram Janmabhoomi Vs. Babri Masjid: A Case Study in Hindu-Muslim Conflict. Voice of India. 1990.  (Also included in Vinay Chandra Mishra and Parmanand Singh, eds.: Ram Janmabhoomi Babri Masjid, Historical Documents, Legal Opinions & J...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Sekolah Menengah Atas Jungdong adalah sekolah menengah atas untuk laki-laki yang berlokasi di Daegu, Korea Selatan. Sejarah Pendirian sekolah tersebut disetujui pada tanggal 15 Januari 1981, dan upacara pembukaan diadakan pada tanggal 5 Maret 1981. Pad...

English television presenter Dermot O'LearyO'Leary in 2014BornSeán Dermot Fintan O'Leary (1973-05-24) 24 May 1973 (age 51)Colchester, Essex, EnglandOccupationBroadcasterYears active1998–presentEmployersITVBBC Radio 2Spouse Dee Koppang ​(m. 2012)​Children1 Seán Dermot Fintan O'Leary (born 24 May 1973) is an English broadcaster. He presented the television talent show The X Factor on ITV from 2007 until its final series in 2018, with the exception ...

 

Katedral Hati KudusSacred Heart Cathedral, HamiltonAgamaAfiliasiGereja Katolik RomaDistrikKeuskupan Maitland-NewcastleEcclesiastical or organizational statusKatedral[2]KepemimpinanSede VacanteDiberkati12 September 1941(sebagai Gereja Hati Kudus)[1]16 July 1995(as Sacred Heart Cathedral)LokasiLokasiHamilton, New South Wales, AustraliaKoordinat32°55′23″S 151°45′14″E / 32.92310923504451°S 151.75378150188115°E / -32.92310923504451; 151.753781501...

 

空军航空兵第八〇四旅“海空雄鹰团”臂章存在時期1938-1950(陆军) 1950-1953、2023-至今(空军) 1953-2023(海军航空兵)國家或地區 中华人民共和国部門 中国人民解放军空军直屬东部战区空军駐軍/總部浙江省台州市別稱“海空雄鹰团”指挥官旅长空军大校政治委员空军大校 空军航空兵第八〇四旅,曾为海军航空兵第十团,海军航空兵第四旅,驻地浙江省台州市,是中�...

American singer and songwriter (born 1948) Not to be confused with Steve Taylor or Steve Tyrer. Steven TylerTyler in 2018BornSteven Victor Tallarico (1948-03-26) March 26, 1948 (age 76)New York City, U.S.Other namesThe Demon of Screamin'Occupations Singer songwriter musician actor television personality Years active1970–presentSpouses Cyrinda Foxe ​ ​(m. 1978; div. 1987)​ Teresa Barrick ​ ​(m. 1988;&...

 

Cet article est une ébauche concernant Apple. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Devant une boutique Apple à Shanghai en 2010. Apple Fanboy est une expression péjorative pour désigner une personne loyale à la marque Apple, en général d'une manière particulièrement intense. Le fanboy Apple est traditionnellement reconnu comme étant celui qui possède et utilise régulièrement des produits ...