Function field sieve

In mathematics the Function Field Sieve is one of the most efficient algorithms to solve the Discrete Logarithm Problem (DLP) in a finite field. It has heuristic subexponential complexity. Leonard Adleman developed it in 1994 [1] and then elaborated it together with M. D. Huang in 1999.[2] Previous work includes the work of D. Coppersmith [3] about the DLP in fields of characteristic two.

The discrete logarithm problem in a finite field consists of solving the equation for , a prime number and an integer. The function for a fixed is a one-way function used in cryptography. Several cryptographic methods are based on the DLP such as the Diffie-Hellman key exchange, the El Gamal cryptosystem and the Digital Signature Algorithm.

Number theoretical background

Function Fields

Let be a polynomial defining an algebraic curve over a finite field . A function field may be viewed as the field of fractions of the affine coordinate ring , where denotes the ideal generated by . This is a special case of an algebraic function field. It is defined over the finite field and has transcendence degree one. The transcendent element will be denoted by .

There exist bijections between valuation rings in function fields and equivalence classes of places, as well as between valuation rings and equivalence classes of valuations.[4] This correspondence is frequently used in the Function Field Sieve algorithm.

Divisors

A discrete valuation of the function field , namely a discrete valuation ring , has a unique maximal ideal called a prime of the function field. The degree of is and we also define .

A divisor is a -linear combination over all primes, so where and only finitely many elements of the sum are non-zero. The divisor of an element is defined as , where is the valuation corresponding to the prime . The degree of a divisor is .

Method

The Function Field Sieve algorithm consists of a precomputation where the discrete logarithms of irreducible polynomials of small degree are found and a reduction step where they are combined to the logarithm of .

Functions that decompose into irreducible function of degree smaller than some bound are called -smooth. This is analogous to the definition of a smooth number and such functions are useful because their decomposition can be found relatively fast. The set of those functions is called the factor base. A pair of functions is doubly-smooth if and are both smooth, where is the norm of an element of over , is some parameter and is viewed as an element of the function field of .

The sieving step of the algorithm consists of finding doubly-smooth pairs of functions. In the subsequent step we use them to find linear relations including the logarithms of the functions in the decompositions. By solving a linear system we then calculate the logarithms. In the reduction step we express as a combination of the logarithm we found before and thus solve the DLP.

Precomputation

Parameter selection

The algorithm requires the following parameters: an irreducible function of degree , a function and a curve of given degree such that . Here is the power in the order of the base field . Let denote the function field defined by .

This leads to an isomorphism and a homomorphism Using the isomorphism each element of can be considered as a polynomial in .

One also needs to set a smoothness bound for the factor base .

Sieving

In this step doubly-smooth pairs of functions are found.

One considers functions of the form , then divides by any as many times as possible. Any that is reduced to one in this process is -smooth. To implement this, Gray code can be used to efficiently step through multiples of a given polynomial.

This is completely analogous to the sieving step in other sieving algorithms such as the Number Field Sieve or the index calculus algorithm. Instead of numbers one sieves through functions in but those functions can be factored into irreducible polynomials just as numbers can be factored into primes.

Finding linear relations

This is the most difficult part of the algorithm, involving function fields, places and divisors as defined above. The goal is to use the doubly-smooth pairs of functions to find linear relations involving the discrete logarithms of elements in the factor base.

For each irreducible function in the factor base we find places of that lie over them and surrogate functions that correspond to the places. A surrogate function corresponding to a place satisfies where is the class number of and is any fixed discrete valuation with . The function defined this way is unique up to a constant in .

By the definition of a divisor for . Using this and the fact that we get the following expression:

where is any valuation with . Then, using the fact that the divisor of a surrogate function is unique up to a constant, one gets

We now use the fact that and the known decomposition of this expression into irreducible polynomials. Let be the power of in this decomposition. Then

Here we can take the discrete logarithm of the equation up to a unit. This is called the restricted discrete logarithm . It is defined by the equation for some unit .

where is the inverse of modulo .

The expressions and the logarithms are unknown. Once enough equations of this form are found, a linear system can be solved to find for all . Taking the whole expression as an unknown helps to gain time, since , , or don't have to be computed. Eventually for each the unit corresponding to the restricted discrete logarithm can be calculated which then gives .

Reduction step

First mod are computed for a random . With sufficiently high probability this is -smooth, so one can factor it as for with . Each of these polynomials can be reduced to polynomials of smaller degree using a generalization of the Coppersmith method.[2] We can reduce the degree until we get a product of -smooth polynomials. Then, taking the logarithm to the base , we can eventually compute

, which solves the DLP.

Complexity

The Function Field Sieve is thought to run in subexponential time in

using the L-notation. There is no rigorous proof of this complexity since it relies on some heuristic assumptions. For example in the sieving step we assume that numbers of the form behave like random numbers in a given range.

Comparison with other methods

There are two other well known algorithms that solve the discrete logarithm problem in sub-exponential time: the index calculus algorithm and a version of the Number Field Sieve.[5] In their easiest forms both solve the DLP in a finite field of prime order but they can be expanded to solve the DLP in as well.

The Number Field Sieve for the DLP in has a complexity of [6] and is therefore slightly slower than the best performance of the Function Field Sieve. However, it is faster than the Function Field Sieve when . It is not surprising that there exist two similar algorithms, one with number fields and the other one with function fields. In fact there is an extensive analogy between these two kinds of global fields.

The index calculus algorithm is much easier to state than the Function Field Sieve and the Number Field Sieve since it does not involve any advanced algebraic structures. It is asymptotically slower with a complexity of . The main reason why the Number Field Sieve and the Function Field Sieve are faster is that these algorithms can run with a smaller smoothness bound , so most of the computations can be done with smaller numbers.

See also

References

  1. ^ L. Adleman. "The function field sieve". In: Algorithmic Number Theory (ANTS-I). Lecture Notes in Computer Science. Springer (1994), pp.108-121.
  2. ^ a b L. Adleman, M.D. Huang. "Function Field Sieve Method for Discrete Logarithms over Finite Fields". In: Inf. Comput. 151 (May 1999), pp. 5-16. DOI: 10.1006/inco.1998.2761.
  3. ^ D. Coppersmith. (1984), "Fast evaluation of discrete logarithms in fields of characteristic two". In: IEEE Trans. Inform. Theory IT-39 (1984), pp. 587-594.
  4. ^ M. Fried and M. Jarden. In: "Field Arithmetic". vol. 11. (Jan. 2005). Chap. 2.1. DOI: 10.1007/b138352.
  5. ^ D. Gordon. "Discrete Logarithm in GF(P) Using the Number Field Sieve". In: Siam Journal on Discrete Mathematics - SIAMDM 6 (Feb. 1993), pp. 124-138. DOI: 10.1137/0406010.
  6. ^ R. Barbulescu, P. Gaudry, T. Kleinjung. "The Tower Number Field Sieve". In: Advances in Cryptology – Asiacrypt 2015. Vol. 9453. Springer, May 2015. pp. 31-58

Read other articles:

Barony in the Peerage of the United Kingdom Not to be confused with Baron Stanley. Barony Stanley of AlderleyArgent, on a bend azure three buck's heads cabossed or, a crescent for differenceCreation date1839Created byQueen VictoriaFirst holderSir John Stanley, 7th BaronetPresent holderRichard Stanley, 9th Baron Stanley of AlderleyFormer seat(s)Alderley ParkMottoSans changer (without changing) Baron Stanley of Alderley, in the County of Chester, is a title in the Peerage of the United Kingdom....

 

 

У этого термина существуют и другие значения, см. Скипетр (значения). Царские регалии: шапка, скипетр и держава большого наряда Михаила Фёдоровича Фрагмент герба России Скипетр бакинских ханов Коронационный портрет обязательно включал изображение монарха в регалиях �...

 

 

Cet article concerne le transport de voyageurs. Pour la notion apparentée dans le transport de marchandises, voir Transport intermodal. Un bus CarPostal devant une gare ferroviaire en Suisse. L'intermodalité est l'utilisation de plusieurs modes de transport au cours d'un même déplacement. On parle plus spécifiquement de technologie et/ou d'autorité organisatrice différentes. Objectifs Article connexe : Décarbonation des transports. Version ancienne d'intermodalité fer-r...

Selim Iسليم اولKhalifah Pertama Dari Kesultanan UtsmaniyahBerkuasa1517 – 22 September 1520PendahuluMuhammad Al-MutawakkilPenerusSüleyman ISultan Utsmaniyah Ke-9Berkuasa24 April 1512 – 22 September 1520PendahuluBayezid IIPenerusSüleyman IInformasi pribadiKelahiran1470/1[1]Amasya, Kesultanan UtsmaniyahKematian22 September 1520 (usia 48–50)Çorlu, Kesultanan UtsmaniyahPemakamanMasjid Yavuz Selim, Fatih, KonstantinopelWangsaUtsmaniNama lengkapSelim bin BayezidAyahBayezid II...

 

 

Dragon li Nama lain Li hua mau Asal  Tiongkok Standar ras CFA standar Kucing domestik (Felis catus) Dragon li (Hanzi: 貍花貓; atau li hua mau) adalah salah satu ras kucing domestik yang berasal dari Tiongkok dan merupakan ras kucing alamiah. Dragon li hanya mendapatkan pengakuan dari Cat Fanciers' Association (CFA) dan Cat Aficionado Association (CAA). Asal Satu teori yang masih menjadi sebuah perdebatan dan belum teruji secara ilmiah menyatakan bahwa, proses domestikasi ras drag...

 

 

Голубянки Самец голубянки икар Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:ТрахейнодышащиеНадкласс:ШестиногиеКласс...

Rural locality in Chernihiv Oblast, Ukraine This article may be a rough translation from Ukrainian. It may have been generated, in whole or in part, by a computer or by a translator without dual proficiency. Please help to enhance the translation. The original article is under українська in the languages list. If you have just labeled this article as needing attention, please add{{subst:Needtrans|pg=Sedniv |language=Ukrainian |comments= }...

 

 

American television sitcom (2001–2007) RebaSeasons 2–6 intertitleGenreSitcomCreated byAllison M. GibsonStarringReba McEntireChristopher RichJoanna GarcíaSteve HoweyScarlett PomersMitch HollemanMelissa PetermanTheme music composerShelby KennedyPhillip WhiteOpening themeI'm a Survivor, performed by Reba McEntireComposersSteve Dorff (season 1)Jonathan Wolff (seasons 2–4)Tree Adams (seasons 5–6)Country of originUnited StatesOriginal languageEnglishNo. of seasons6No. of episodes127 (list ...

 

 

tiket.comURLhttp://www.tiket.com Tipesitus web BahasaIndonesia, InggrisPemilikPT Global Tiket Network (bagian dari PT Djarum)Berdiri sejak12 Agustus 2011Lokasi kantor pusatJakarta NegaraIndonesia StatusAktif tiket.com (ditulis tanpa menggunakan huruf kapital) adalah perusahaan agen perjalanan yang berbasis daring melalui situs web maupun aplikasi. Perusahaan ini berbasis di Jakarta, Indonesia dan dibangun pada bulan Agustus 2011. Sejarah Perusahaan ini dibangun pada bulan Agustus 2011 oleh We...

Halaman ini berisi artikel tentang serial televisi AS. Untuk kegunaan lain, lihat Growing Pains (disambiguasi). Growing PainsGenreSitkomPembuatNeal MarlensPemeranAlan ThickeJoanna KernsKirk CameronTracey GoldJeremy MillerAshley JohnsonLeonardo DiCaprioPenggubah lagu temaJohn BettisSteve DorffLagu pembukaAs Long As We Got Each OtherLagu penutupAs Long As We Got Each OtherPenata musikSteve DorffNegara asalAmerika SerikatBahasa asliInggrisJmlh. musim7Jmlh. episode166 (daftar episode)Produk...

 

 

Former British government website DirectgovScreenshot Type of siteGovernment informationAvailable inEnglish and WelshOwnerHM GovernmentCreated byUK government departmentsURLdirect.gov.uk (archive)CommercialNoRegistrationNoLaunched1 April 2004; 20 years ago (2004-04-01)Current statusOffline 17 October 2012; 11 years ago (2012-10-17)Content licenseCrown copyright See copyright page for licencing information. Directgov was the British government...

 

 

American legislative district Map of Massachusetts House of Representatives' 7th Hampden district, based on the 2010 United States census. Massachusetts House of Representatives' 7th Hampden district in the United States is one of 160 legislative districts included in the lower house of the Massachusetts General Court. It covers parts of Hampden County and Hampshire County.[1] Democrat Aaron Saunders of Belchertown has represented the district since 2023.[2] Towns represented ...

Piero Puricelli Senatore del Regno d'ItaliaDurata mandato16 maggio 1929 – Incarichi parlamentariCommissione degli affari dell'Africa italiana (17 aprile 1939-5 agosto 1943) Sito istituzionale Dati generaliPartito politico Gruppo Unione fascista al Senato - PNF Titolo di studioLaurea UniversitàPolitecnico federale di Zurigo ProfessioneIngegnere, industriale Piero Puricelli (Milano, 4 aprile 1883 – Milano, 8 maggio 1951) è stato un ingegnere e imprenditor...

 

 

Liga Mexicana de Béisbol 1988 Campeón Diablos Rojos del México Subcampeón Saraperos de Saltillo LI Juego de Estrellas West Martin Field Laredo, Texas Jugador Más Valioso Enrique Aguilar (NTE/AGS) Resultado Sur 0-8 Norte Líderes % Bateo Nick Castañeda (YUC) - .374 C. Producidas Nelson Barrera (MEX) - 124 Home Runs Leo Hernández (UL) - 36 J. Ganados Jesús Chito Ríos (TIG) - 21 Ponches Jesús Chito Ríos (TIG) - 195 Designaciones Novato del año Marco Antonio Romero (JAL) Andrés Cruz...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Qanj Ali Khan Afshar Castle – news · newspapers · books · scholar · JSTOR (February 2021) Castle in Kerman Province, Iran Qanj Ali Khan Afshar castleقلعه غنجعلیخان افشارGeneral informationTypeCastleTown or cityBaft CountyCountry Iran...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2009. Kampanye Selatan Zhuge LiangBagian dari Tiga KerajaanTanggal225LokasiNanzhong (Yunnan), CinaHasil Kemenangan Shu HanPihak terlibat Shu Han Pemberontak ShuNanmanTokoh dan pemimpin Zhuge Liang Yong KaiZhu BaoGao DingMeng Huo Kampanye Selatan Zhuge Liang (H...

 

 

Medunocomune(IT) Meduno(FUR) }} [1] Meduno – VedutaLa chiesa di Santa Maria Maggiore LocalizzazioneStato Italia Regione Friuli-Venezia Giulia Provincia Pordenone AmministrazioneSindacoMarina Crovatto (lista civica) dal 27-5-2019 TerritorioCoordinate46°13′N 12°48′E46°13′N, 12°48′E (Meduno) Altitudine313 m s.l.m. Superficie31,59 km² Abitanti1 507[2] (30-4-2022) Densità47,7 ab./km² FrazioniNavarons Comuni confinantiC...

 

 

Sam Nunn Samuel Augustus Nunn Jr. (lahir 8 September 1938) adalah seorang politikus Amerika Serikat. Ia menjabat sebagai Senator Amerika Serikat dari Georgia (1972–1997) sebagai anggota Partai Demokrat. Pranala luar Wikiquote memiliki koleksi kutipan yang berkaitan dengan: Sam Nunn. Wikimedia Commons memiliki media mengenai Sam Nunn. Wikisumber memiliki karya asli dari atau mengenai: Sam Nunn Annotated Bibliography for Sam Nunn from the ALsos Digital Library for Nuclear Issues Diarsipkan 20...

オスマン帝国時代のシリアを示した地図。歴史的シリアに当たる領域が含まれている。 歴史的シリア(れきしてきシリア)は、大シリア、シリア地方ともいわれ、現在のシリア・アラブ共和国およびレバノン、ヨルダン、パレスチナ、イスラエルを含む地域の歴史的な呼称。西は地中海に面し、北は現在のトルコの一部、東はイラクと接し、南は紅海およびアラビア半�...

 

 

American baseball and football player (1929–2014) For the American musician, see Red Wilson (musician). For the Canadian business executive, see Lynton Wilson. For the college football coach, see Shirley Wilson. Baseball player Red WilsonCatcherBorn: (1929-03-07)March 7, 1929Milwaukee, Wisconsin, U.S.Died: August 8, 2014(2014-08-08) (aged 85)Fitchburg, Wisconsin, U.S.Batted: RightThrew: RightMLB debutSeptember 22, 1951, for the Chicago White SoxLast MLB appearanceSeptemb...