Short division

In arithmetic, short division is a division algorithm which breaks down a division problem into a series of easier steps. It is an abbreviated form of long division — whereby the products are omitted and the partial remainders are notated as superscripts.

As a result, a short division tableau is shorter than its long division counterpart — though sometimes at the expense of relying on mental arithmetic, which could limit the size of the divisor.

For most people, small integer divisors up to 12 are handled using memorised multiplication tables, although the procedure could also be adapted to the larger divisors as well.

As in all division problems, a number called the dividend is divided by another, called the divisor. The answer to the problem would be the quotient, and in the case of Euclidean division, the remainder would be included as well.

Using short division, arbitrarily large dividends can be handled.[1]

Tableau

Short division does not use the slash (/) or division sign (÷) symbols. Instead, it displays the dividend, divisor, and quotient (when it is found) in a tableau. An example is shown below, representing the division of 500 by 4. The quotient is 125.

Alternatively, the bar may be placed below the number, which means the sum proceeds down the page. This is in distinction to long division, where the space under the dividend is required for workings:

Example

The procedure involves several steps. As an example, consider 950 divided by 4:

  1. The dividend and divisor are written in the short division tableau:
    Dividing 950 by 4 in a single step would require knowing the multiplication table up to 238 × 4. Instead, the division is reduced to small steps. Starting from the left, enough digits are selected to form a number (called the partial dividend) that is at least 4×1 but smaller than 4×10 (4 being the divisor in this problem). Here, the partial dividend is 9.
  2. The first number to be divided by the divisor (4) is the partial dividend (9). One writes the integer part of the result (2) above the division bar over the leftmost digit of the dividend, and one writes the remainder (1) as a small digit above and to the right of the partial dividend (9).
  3. Next one repeats step 2, using the small digit concatenated with the next digit of the dividend to form a new partial dividend (15). Dividing the new partial dividend by the divisor (4), one writes the result as before — the quotient above the next digit of the dividend, and the remainder as a small digit to the upper right. (Here 15 divided by 4 is 3, with a remainder of 3.)
  4. One continues repeating step 2 until there are no digits remaining in the dividend. In this example, we see that 30 divided by 4 is 7 with a remainder of 2. The number written above the bar (237) is the quotient, and the last small digit (2) is the remainder.
  5. The answer in this example is 237 with a remainder of 2. Alternatively, we can continue the above procedure if we want to produce a decimal answer. We do this by adding a decimal point and zeroes as necessary at the right of the dividend, and then treating each zero as another digit of the dividend. Thus, the next step in such a calculation would give the following:

Using the alternative layout the final workings would be:

As usual, similar steps can also be used to handle the cases with a decimal dividend, or the cases where the divisor involves multiple digits.[2]

Prime factoring

An example of manual factorizing.

A common requirement is to reduce a number to its prime factors. This is used particularly in working with vulgar fractions. The dividend is successively divided by prime numbers, repeating where possible:

This results in 950 = 2 x 5² x 19

Modulo division

When one is interested only in the remainder of the division, this procedure (a variation of short division) ignores the quotient and tallies only the remainders. It can be used for manual modulo calculation or as a test for even divisibility. The quotient digits are not written down.

The following shows the solution (using short division) of 16762109 divided by seven.

The remainder is zero, so 16762109 is exactly divisible by 7.

As an automaton

Given a divisor k, this procedure can be written as a deterministic finite automaton with k states, each corresponding to a possible remainder.[3] This implies that the set of numbers divisible by k is a regular language.

See also

References

  1. ^ G.P Quackenbos, LL.D. (1874). "Chapter VII: Division". A Practical Arithmetic. D. Appleton & Company.
  2. ^ "Dividing whole numbers -- A complete course in arithmetic". www.themathpage.com. Retrieved 2019-06-23.
  3. ^ Alexeev, Boris (1 September 2004). "Minimal DFA for testing divisibility". Journal of Computer and System Sciences. 69 (2): 235. doi:10.1016/j.jcss.2004.02.001.

Read other articles:

Dieter Elsneg Informasi pribadiNama lengkap Dieter ElsnegTanggal lahir 4 Februari 1990 (umur 34)Tempat lahir Wagna, AustriaPosisi bermain PenyerangInformasi klubKlub saat ini Kapfenberger SVNomor 11Karier senior*Tahun Tim Tampil (Gol)2006–2008 Grazer AK 26 (11)2008– Frosinone Calcio 8 (1)2010 → Sampdoria (pinjaman) 0 (0)2010– → Kapfenberger SV (pinjaman) 35 (4) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per 14:38, 27 Agustus 2011 (UTC...

 

 

Emre Mor Presentasi RC Celta - Musim 18/19Informasi pribadiNama lengkap Emre MorTanggal lahir 24 Juli 1997 (umur 26)Tempat lahir Brønshøj, Kopenhagen, DenmarkTinggi 1,69 m (5 ft 6+1⁄2 in)[1]Posisi bermain Pemain sayapInformasi klubKlub saat ini FenerbahçeKarier junior2001–2006 Brønshøj BK2006–2015 Lyngby BK2015 NordsjællandKarier senior*Tahun Tim Tampil (Gol)2015 – 2016 Nordsjælland 13 (2)2016 – 2017 Borussia Dortmund 12 (1)2017 - 2021 Celta d...

 

 

Hubungan Israel-Italia Israel Italia Hubungan Israel–Italia merujuk kepada hubungan luar negeri antara Negara Israel dan Republik Italia. Italia mengakui Israel pada 8 Februari 1949, setelah Deklarasi Pendirian Negara Israel pada 14 Mei 1948 oleh David Ben-Gurion, Kepala Eksekutif Organisasi Zionis Sedunia, ketua Agensi Yahudi untuk Palestina dan kemudian Perdana Menteri Israel pertama.[1] Italia memiliki kedubes di Tel Aviv,[2] dua konjen di Yerusalem Barat dan Yerusalem T...

County in Virginia, United States County in VirginiaGloucester CountyCountyGloucester County Courthouse Square, historic district SealLocation within the U.S. state of VirginiaVirginia's location within the U.S.Coordinates: 37°24′N 76°31′W / 37.4°N 76.52°W / 37.4; -76.52Country United StatesState VirginiaFounded1651Named forHenry Stuart, Duke of GloucesterSeatGloucester CourthouseLargest communityGloucester PointArea • Total288 sq...

 

 

American integrated naval weapons system developed by RCA and produced by Lockheed Martin This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Aegis Combat System – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this template message) USS Lake Champlain (CG-57)...

 

 

Perang Inggris-ZanzibarHarem Sultan setelah pengeboman.Tanggal09.02–09.40 EAT (06.02–06.40 UTC), 27 Agustus 1896[nb 1]LokasiZanzibar Town, Kesultanan ZanzibarHasil Kemenangan telak BritaniaPihak terlibat  Britania Raya Kesultanan ZanzibarTokoh dan pemimpin Harry Rawson Lloyd Mathews Khalid bin Bargash SalehKekuatan Darat:1.050Laut:3 kapal penjelajah2 kapal meriam Darat:2.8004 artileri1 artileri pesisirLaut:1 pesiar kerajaan2 perahuKorban 1 terluka[1] 500 tewas atau te...

Neodymium arsenate Names Other names Neodymium(III) arsenate Identifiers CAS Number 15479-84-2 Y 3D model (JSmol) Interactive image InChI InChI=1S/AsH3O4.Nd/c2-1(3,4)5;/h(H3,2,3,4,5);/q;+3/p-3Key: NDJXBXBULAKKIO-UHFFFAOYSA-K SMILES [O-][As](=O)([O-])[O-].[Nd+3] Properties Chemical formula NdAsO4 Molar mass 313.89 Appearance faint pink powder Density 5.3-5.9 g/cm3[1] Solubility in water insoluble Hazards GHS labelling: Pictograms Signal word Danger Hazard ...

 

 

Talking BookAlbum studio karya Stevie WonderDirilis28 Oktober 1972Direkam1972GenreR&BDurasi42:41LabelMotownProduserStevie Wonder, Robert Margouleff, Malcolm CecilKronologi Stevie Wonder Music of My Mind(1972)Music of My Mind1972 Talking Book (1972) Innervisions(1973)Innervisions1973 Talking Book adalah album oleh Stevie Wonder yang diterbitkan pada 28 Oktober 1972. Album ini berisi kemunculan beberapa bintang tamu, seperti Jeff Beck, Ray Parker, Jr., dan Buzzy Feton (Howard Buzz Feite...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Hünenberg Hünenberg gemeinde de Suiza Escudo HünenbergLocalización de Hünenberg en SuizaPaís  Suiza• Cantón  Cantón de ZugUbicación 47°10′34″N 8°25′35″E / 47.176111111111, 8.4263888888889• Altitud 444 mSuperficie 18,7 km²Población[1]​ 8841 hab. (2014)• Densidad 473 hab./km²Lengua AlemánCódigo postal 6331Sitio web Sitio web oficial[editar datos en Wikidata] Hünenberg es una comuna suiz...

 

 

Not to be confused with Glenfield Park, New South Wales. Suburb of Sydney, New South Wales, AustraliaGlenfieldSydney, New South WalesGlenfield PanoramaMapPopulation9,633 (2016 census)[1]Established1881Postcode(s)2167Elevation25 m (82 ft)Location36 km (22 mi) SW of SydneyLGA(s)City of CampbelltownState electorate(s)Macquarie FieldsFederal division(s)Werriwa Suburbs around Glenfield: Prestons Casula Liverpool Edmondson Park Glenfield Moorebank Macquarie Lin...

 

 

19th-century German poet Eduard MörikeBorn(1804-09-08)8 September 1804Ludwigsburg, Electorate of WürttembergDied4 June 1875(1875-06-04) (aged 70)Stuttgart, Kingdom of WürttembergOccupationPoet, writerNationalityGermanSignature Eduard Friedrich Mörike (German pronunciation: [ˈeːduart ˈfʁiːdʁɪç ˈmøːʁɪkə]; 8 September 1804 – 4 June 1875)[1] was a German Lutheran pastor who was also a Romantic poet and writer of novellas and novels. Many of hi...

Disambiguazione – Se stai cercando la lista degli stati membri dell'Unione europea, vedi Stati membri dell'Unione europea. Voce principale: Europa.      Stati che si trovano interamente all'interno dei confini convenzionali dell'Europa     Territori europei degli Stati transcontinentali     Territori asiatici degli Stati transcontinentali     Stati che si trovano geograficamente in Asia L'el...

 

 

Puppet play by George Bernard Shaw Shakes versus ShavLanchester's 1953 published version, depicting the Shakespeare and Shaw puppetsWritten byGeorge Bernard ShawCharacters George Bernard Shaw William Shakespeare Date premieredAugust 9, 1949 (1949-08-09)Place premieredLyceum Hall, MalvernSubjectShakespeare and Shaw bicker about who is the better writerGenrePuppet Shakes versus Shav (1949) is a puppet play written by George Bernard Shaw. It was Shaw's last completed dramatic work...

 

 

Typographical symbol or glyph (*) * redirects here. For other uses, see Asterisk (disambiguation) and * (disambiguation). For the comic book series, see Asterix. *AsteriskIn UnicodeU+002A * ASTERISK (*, *)RelatedSee alsoU+203B ※ REFERENCE MARK (komejirushi) U+A673 ꙳ SLAVONIC ASTERISK Look up * or asterisk in Wiktionary, the free dictionary. The asterisk (/ˈæstərɪsk/ *), from Late Latin asteriscus, from Ancient Greek ἀστε�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2020) سليمان العطار معلومات شخصية تاريخ الميلاد 1945 الوفاة 13 مارس 2020 (75 سنة)القاهرة الجنسية  مصر الحياة العملية المدرسة الأم جامعة القاهرة المهنة أكاديمي، كاتب، ...

 

 

British physicist (1897–1967) For the politician, see John Cockcroft (politician). For the cardiologist, see John R. Cockcroft. SirJohn CockcroftOM KCB CBE FRSCockcroft in 19511st Master of Churchill College, CambridgeIn office1959–1967Succeeded byWilliam Hawthorne Personal detailsBorn(1897-05-27)27 May 1897Todmorden, West Riding of Yorkshire, EnglandDied18 September 1967(1967-09-18) (aged 70)Cambridge, EnglandResting placeAscension Parish Burial GroundSpouse Elizabeth Cr...

 

 

Come leggere il tassoboxKoiCarpe koi in un laghettoStato di conservazioneBasso rischio (lc) Classificazione scientificaDominioEukaryota RegnoAnimalia SottoregnoEumetazoa SuperphylumDeuterostomia PhylumChordata SubphylumVertebrata InfraphylumGnathostomata SuperclasseOsteichthyes ClasseActinopterygii SottoclasseNeopterygii InfraclasseTeleostei SuperordineOstariophysi OrdineCypriniformes SottordineCyprinoidea FamigliaCyprinidae SottofamigliaCyprininae GenereCyprinus SpecieCyprinus carpio La carp...

American screenwriter Clara S. BerangerClara Beranger in 1918BornClara Strouse(1886-01-14)January 14, 1886Baltimore, Maryland, U.S.DiedSeptember 10, 1956(1956-09-10) (aged 70)Hollywood, California, U.S.OccupationScreenwriterEducationGoucher College (BA)SpouseAlbert Berwanger (1907 – ?) William C. DeMille ​ ​(m. 1928; died 1955)​Children1 Clara Beranger (née Strouse; January 14, 1886 – September 10, 1956) was an American screenwrit...

 

 

Victor Hugo caricaturé par Honoré Daumier dans Le Charivari du 20 juillet 1849. Une caricature est un portrait peint, dessiné ou modelé qui amplifie certains aspects d'un sujet. Souvent humoristique, la caricature est un type de satire graphique quand elle charge des aspects ridicules ou déplaisants. Devant être comprise au premier coup d'œil, elle s'appuie sur la connivence avec son public, sur un ensemble de codes communs liés aux sensibilités, aux traditions et au partage d'une vi...