Integer relation algorithm

An integer relation between a set of real numbers x1, x2, ..., xn is a set of integers a1, a2, ..., an, not all 0, such that

An integer relation algorithm is an algorithm for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them, or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain upper bound.[1]

History

For the case n = 2, an extension of the Euclidean algorithm can find any integer relation that exists between any two real numbers x1 and x2. The algorithm generates successive terms of the continued fraction expansion of x1/x2; if there is an integer relation between the numbers, then their ratio is rational and the algorithm eventually terminates.

  • The Ferguson–Forcade algorithm was published in 1979 by Helaman Ferguson and R.W. Forcade.[2] Although the paper treats general n, it is not clear if the paper fully solves the problem because it lacks the detailed steps, proofs, and a precision bound that are crucial for a reliable implementation.
  • The first algorithm with complete proofs was the LLL algorithm, developed by Arjen Lenstra, Hendrik Lenstra and László Lovász in 1982.[3]
  • The HJLS algorithm, developed by Johan Håstad, Bettina Just, Jeffrey Lagarias, and Claus-Peter Schnorr in 1986.[4][5]
  • The PSOS algorithm, developed by Ferguson in 1988.[6]
  • The PSLQ algorithm, developed by Ferguson and Bailey in 1992 and substantially simplified by Ferguson, Bailey, and Arno in 1999.[7][8] In 2000 the PSLQ algorithm was selected as one of the "Top Ten Algorithms of the Century" by Jack Dongarra and Francis Sullivan[9] even though it is considered essentially equivalent to HJLS.[10][11]
  • The LLL algorithm has been improved by numerous authors. Modern LLL implementations can solve integer relation problems with n above 500.

Applications

Integer relation algorithms have numerous applications. The first application is to determine whether a given real number x is likely to be algebraic, by searching for an integer relation between a set of powers of x {1, x, x2, ..., xn}. The second application is to search for an integer relation between a real number x and a set of mathematical constants such as e, π and ln(2), which will lead to an expression for x as a linear combination of these constants.

A typical approach in experimental mathematics is to use numerical methods and arbitrary precision arithmetic to find an approximate value for an infinite series, infinite product or an integral to a high degree of precision (usually at least 100 significant figures), and then use an integer relation algorithm to search for an integer relation between this value and a set of mathematical constants. If an integer relation is found, this suggests a possible closed-form expression for the original series, product or integral. This conjecture can then be validated by formal algebraic methods. The higher the precision to which the inputs to the algorithm are known, the greater the level of confidence that any integer relation that is found is not just a numerical artifact.

A notable success of this approach was the use of the PSLQ algorithm to find the integer relation that led to the Bailey–Borwein–Plouffe formula for the value of π. PSLQ has also helped find new identities involving multiple zeta functions and their appearance in quantum field theory; and in identifying bifurcation points of the logistic map. For example, where B4 is the logistic map's fourth bifurcation point, the constant α = −B4(B4 − 2) is a root of a 120th-degree polynomial whose largest coefficient is 25730.[12][13] Integer relation algorithms are combined with tables of high precision mathematical constants and heuristic search methods in applications such as the Inverse Symbolic Calculator or Plouffe's Inverter.

Integer relation finding can be used to factor polynomials of high degree.[14]

References

  1. ^ Since the set of real numbers can only be specified up to a finite precision, an algorithm that did not place limits on the size of its coefficients would always find an integer relation for sufficiently large coefficients. Results of interest occur when the size of the coefficients in an integer relation is small compared to the precision with which the real numbers are specified.
  2. ^ Weisstein, Eric W. "Integer Relation". MathWorld.
  3. ^ Weisstein, Eric W. "LLL Algorithm". MathWorld.
  4. ^ Weisstein, Eric W. "HJLS Algorithm". MathWorld.
  5. ^ Johan Håstad, Bettina Just, Jeffrey Lagarias, Claus-Peter Schnorr: Polynomial time algorithms for finding integer relations among real numbers. Preliminary version: STACS 1986 (Symposium Theoret. Aspects Computer Science) Lecture Notes Computer Science 210 (1986), p. 105–118. SIAM J. Comput., Vol. 18 (1989), pp. 859–881
  6. ^ Weisstein, Eric W. "PSOS Algorithm". MathWorld.
  7. ^ Weisstein, Eric W. "PSLQ Algorithm". MathWorld.
  8. ^ A Polynomial Time, Numerically Stable Integer Relation Algorithm Archived 2007-07-17 at the Wayback Machine by Helaman R. P. Ferguson and David H. Bailey; RNR Technical Report RNR-91-032; July 14, 1992
  9. ^ Cipra, Barry Arthur. "The Best of the 20th Century: Editors Name Top 10 Algorithms" (PDF). SIAM News. 33 (4). Archived from the original (PDF) on 2021-04-24. Retrieved 2012-08-17.
  10. ^ Jingwei Chen, Damien Stehlé, Gilles Villard: A New View on HJLS and PSLQ: Sums and Projections of Lattices., ISSAC'13
  11. ^ Helaman R. P. Ferguson, David H. Bailey and Steve Arno, ANALYSIS OF PSLQ, AN INTEGER RELATION FINDING ALGORITHM: [1]
  12. ^ David H. Bailey and David J. Broadhurst, "Parallel Integer Relation Detection: Techniques and Applications," Archived 2011-07-20 at the Wayback Machine Mathematics of Computation, vol. 70, no. 236 (October 2000), pp. 1719–1736; LBNL-44481.
  13. ^ I. S. Kotsireas, and K. Karamanos, "Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey–Broadhurst Conjectures", I. J. Bifurcation and Chaos 14(7):2417–2423 (2004)
  14. ^ M. van Hoeij: Factoring polynomials and the knapsack problem. J. of Number Theory, 95, 167–189, (2002).

Read other articles:

Maharaja Sawai Jai Singh (3 November 1688-21 September 1743) adalah penguasa kerajaan Amber (nantinya disebut Jaipur). Ia lahir di Amber, ibu kota Kachwaha. Ia menjadi penguasa Amber tahun 1699 pada usia 11 tahun ketika ayahnya Maharaja Bishan Singh meninggal dunia. Pranala luar Genealogy of the rulers of Jaipur Annexation of Shekhawati Diarsipkan 2006-10-20 di Wayback Machine. Artikel bertopik biografi tokoh ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

That Luang Festival Festival Laos merupakan serangkaian acara yang sering diadakan di Laos. Hampir setiap bulan ada festival yang menarik dan unik diselenggarakan di Laos. Pada bulan Januari diadakan perayaan tahun baru. Kemudian ada perayaan Boun Pha Vet dan Boun Ma Ka Bu Saar yang diadakan pada bulan Januari sampai Febuari , kedua festival tersebut merupakan festival keagamaan yang berkaitan dengan Budha. Lalu pada bulan Maret ada Boun Khoun Kou, festival panen.[1]Festival Boun Pi M...

 

Ini adalah nama Tionghoa; marganya adalah Juanda (莊). John JuandaJohn Juanda at the 2008 World Series of Poker.JulukanJJ, LuckboxTempat tinggalMarina del Rey, CaliforniaLahir8 Juli 1971 (umur 52)Medan, Sumatera Utara, IndonesiaWorld Series of PokerJumlah gelang5Meja terakhir32 kaliMendapat uang65 kaliPosisi ITM tertinggiMain Event finish31, 2005World Poker TourGelarTidak adaMeja terakhir6 kali.Mendapat uang19 kali.European Poker TourGelar1Meja terakhir3 kali.Mendapat uang5 kali.Informa...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Ardath rokok – berita · surat kabar · buku · cendekiawan · JSTOR (Februari 2023) ArdathJenis produkRokok putihPemilikBentoel GroupProdusenBentoel GroupNegaraInggris RayaDiluncurkan1891; 133 tahun lalu...

 

Men's association football team This article is about the men's team. For the women's team, see Nepal women's national football team. NepalNickname(s)The GorkhalisAssociationAll Nepal Football Association (ANFA)ConfederationAFC (Asia)Sub-confederationSAFF (South Asia)Head coachVincenzo Alberto AnneseCaptainKiran ChemjongMost capsKiran Chemjong (100)Top scorerHari Khadka Nirajan RayamajhiAnjan Bista (13)Home stadiumDasharath StadiumFIFA codeNEP First colours Second colours FIFA rankingCurrent ...

 

Durham mayoral election Durham mayoral election, 2021 ← 2019 November 2, 2021 2023 →   Candidate Elaine O'Neal Javiera Caballero Popular vote 25,936 4,463 Percentage 84.6% 14.6% Mayor before election Steve Schewel Elected Mayor Elaine O'Neal Elections in North Carolina Federal government U.S. President 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1...

Artikel ini membutuhkan penyuntingan lebih lanjut mengenai tata bahasa, gaya penulisan, hubungan antarparagraf, nada penulisan, atau ejaan. Anda dapat membantu untuk menyuntingnya. Tony Herbiansyah Bupati Kolaka Timur Ke-1Masa jabatan17 Februari 2016 – 17 Februari 2021Penjabat: 22 April 2013 - 22 April 2015PresidenJoko WidodoGubernurNur AlamAli MaziWakilAndi Merya Pendahulujabatan baruPenggantiSamsul BahriWakil Bupati KendariMasa jabatan2003–2008PresidenMegawati Soekarnoputri...

 

Bulan Pejeng Bulan Pejeng (Inggris: Moon of Pejeng) adalah sebutan terhadap sebuah genderang (nekara) perunggu purbakala yang terdapat di Desa Pejeng, Pulau Bali. Nekara ini diyakini sebagai yang terbesar ukurannya di dunia,[1] dan juga merupakan artefak tinggalan Zaman Perunggu yang terbesar yang masih ada.[2] Nekara ini tersimpan di Pura Penataran Sasih di Desa Pejeng, Tampak Siring, Gianyar dan dipercaya orang Bali memiliki kekuatan supranatural. Nekara ini dianggap suc...

 

David Brown2000 Yayasan jantung Larry KingPekerjaanProduser filmTahun aktif1973–2002Suami/istriHelen Gurley (25 September 1959-1 Februari 2010) David Brown (28 Juli 1916 – 1 Februari 2010[1]) adalah seorang produser film asal Amerika Serikat yang terkenal atas karya layar lebar buatannya The Sugarland Express (1974), Jaws (1975), Cocoon (1985), Deep Impact (1998), dan Angela's Ashes (1999). Berkarier di dunia film sejak tahun 1973 dan sampai tahun 2002. David B...

B

  此條目介紹的是拉丁字母中的第2个字母。关于其他用法,请见「B (消歧义)」。   提示:此条目页的主题不是希腊字母Β、西里尔字母В、Б、Ъ、Ь或德语字母ẞ、ß。 BB b(见下)用法書寫系統拉丁字母英文字母ISO基本拉丁字母(英语:ISO basic Latin alphabet)类型全音素文字相关所属語言拉丁语读音方法 [b][p][ɓ](适应变体)Unicode编码U+0042, U+0062字母顺位2数值 2歷史發...

 

Italian former footballer and manager Ciro Ferrara Reale Ferrara in 2012Personal informationFull name Ciro Ferrara[1]Date of birth (1967-02-11) 11 February 1967 (age 57)Place of birth Naples, ItalyHeight 1.80 m (5 ft 11 in)Position(s) FullbackYouth career1980–1984 NapoliSenior career*Years Team Apps (Gls)1984–1994 Napoli 247 (12)1994–2005 Juventus 253 (15)Total 500 (27)International career1985–1987 Italy U21 6 (1)1988 Italy Olympic 5 (1)1987–2000 Italy 49...

 

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

Part of the Russian invasion of Ukraine Kherson offensive redirects here. Not to be confused with 2022 Kherson counteroffensive. For Ukraine's recapture of the city, see Liberation of Kherson. Battle of KhersonPart of the southern Ukraine campaign of the Russian invasion of UkraineDate24 February – 2 March 2022 (6 days)LocationIn and around Kherson, UkraineResult Russian victoryBelligerents Russia UkraineUnits involved Russian Armed Forces 58th Combined Arms Army 42nd Guards Motor Rifle Div...

 

Topolino & i cattivi Disneyfilm d'animazione direct-to-video La House of Mouse diventa la House of Villains osservata da Topolino e Minni in una scena del film Titolo orig.Mickey's House of Villains Lingua orig.inglese PaeseStati Uniti RegiaJamie Mitchell Produttore esecutivoBobs Gannaway, Tony Craig ProduttoreMelinda Rediger SceneggiaturaThomas Hart Char. designDana Landsberg, Kexx Singleton Dir. artisticaMike Moon, Jamie Mitchell MusicheMichael Tavera St...

 

2nd Maurya Emperor Not to be confused with Bimbisara. For the river, see Bindusara River. BindusaraA silver coin of 1 karshapana of the Maurya empire, period of Bindusara Maurya about 297–273 BC, workshop of Pataliputra. Obv: Symbols with a Sun Rev: Symbol Dimensions: 14 x 11 mm Weight: 3.4 g.2nd Mauryan EmperorReignc. 297 – c. 273 BCECoronationc. 297 BCEPredecessorChandragupta Maurya (father)SuccessorAshokaBorn320 BCEDiedc. 273 BCE (aged c. 46  – 47)Spous...

Cold War event in Turkey 1958 C-130 shootdown incidentThe gun-camera photo from Sr. Lieutenant Kucheryaev as his MiG-17 attacks the C-130CIncidentDateSeptember 2, 1958 (1958-09-02)SummaryShot down by four Mikoyan-Gurevich MiG-17 interceptorsSitenear Yerevan, Armenian SSR, Soviet Union 40°33′0″N 44°6′0″E / 40.55000°N 44.10000°E / 40.55000; 44.10000AircraftAircraft typeLockheed C-130A-II-LMOperator United States Air Force on behalf of...

 

Term for a group of former PayPal employees Members of the PayPal Mafia on Fortune magazine dressed in mafia-like attire. From left to right, top to bottom: Jawed Karim, Jeremy Stoppelman, Andrew McCormack, Premal Shah, Luke Nosek, Ken Howery, David O. Sacks, Peter Thiel, Keith Rabois, Reid Hoffman, Max Levchin, Roelof Botha, Russel Simmons The PayPal Mafia is a group of former PayPal employees and founders who have since founded and/or developed additional technology companies based in Silic...

 

2016年夏季奥林匹克运动会挪威代表團挪威国旗IOC編碼NORNOC挪威奧林匹克暨殘障奧林匹克委員會和體育同盟網站www.idrettsforbundet.no(挪威文)2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員62參賽項目13个大项旗手开幕式:Ole Kristian Bryhn(射击)[1]闭幕式:卡丽·奥尔维克·格里姆斯伯(手球)[2]獎牌榜排名第75 金牌 銀牌 銅牌 總計 0 0 4 4 历届奥...

ولاية جندوبة    موقع ولاية جندوبة في الجمهورية التونسية    الإحداثيات 36°30′00″N 8°47′00″E / 36.5°N 8.7833333333333°E / 36.5; 8.7833333333333   [1] تاريخ التأسيس 21 يونيو 1956  تقسيم إداري  البلد تونس[3][2]  التقسيم الأعلى تونس[3]  العاصمة جندوبة  خصائ�...

 

Gilmore GirlsPembuatAmy Sherman-PalladinoPemeranLauren GrahamAlexis BledelMelissa McCarthyKeiko AgenaYanic TruesdaleScott PattersonKelly BishopEdward HerrmannLiza WeilJared PadaleckiMilo VentimigliaSean GunnChris EigemanMatt CzuchryLagu pembukaWhere You Lead oleh Carole King dan Louise GoffinPenata musikSam PhillipsNegara asal Amerika SerikatBahasa asliInggrisJmlh. musim7Jmlh. episode153ProduksiProduser eksekutif Amy Sherman-Palladino Daniel Palladino Gavin Polone David S. Rosenth...