Topological manifold

In topology, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure.[1] However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

Formal definition

A topological space X is called locally Euclidean if there is a non-negative integer n such that every point in X has a neighborhood which is homeomorphic to real n-space Rn.[2]

A topological manifold is a locally Euclidean Hausdorff space. It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact[3] or second-countable.[2]

In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to Rn.

Examples

n-manifolds

Projective manifolds

Other manifolds

Properties

The property of being locally Euclidean is preserved by local homeomorphisms. That is, if X is locally Euclidean of dimension n and f : YX is a local homeomorphism, then Y is locally Euclidean of dimension n. In particular, being locally Euclidean is a topological property.

Manifolds inherit many of the local properties of Euclidean space. In particular, they are locally compact, locally connected, first countable, locally contractible, and locally metrizable. Being locally compact Hausdorff spaces, manifolds are necessarily Tychonoff spaces.

Adding the Hausdorff condition can make several properties become equivalent for a manifold. As an example, we can show that for a Hausdorff manifold, the notions of σ-compactness and second-countability are the same. Indeed, a Hausdorff manifold is a locally compact Hausdorff space, hence it is (completely) regular.[4] Assume such a space X is σ-compact. Then it is Lindelöf, and because Lindelöf + regular implies paracompact, X is metrizable. But in a metrizable space, second-countability coincides with being Lindelöf, so X is second-countable. Conversely, if X is a Hausdorff second-countable manifold, it must be σ-compact.[5]

A manifold need not be connected, but every manifold M is a disjoint union of connected manifolds. These are just the connected components of M, which are open sets since manifolds are locally-connected. Being locally path connected, a manifold is path-connected if and only if it is connected. It follows that the path-components are the same as the components.

The Hausdorff axiom

The Hausdorff property is not a local one; so even though Euclidean space is Hausdorff, a locally Euclidean space need not be. It is true, however, that every locally Euclidean space is T1.

An example of a non-Hausdorff locally Euclidean space is the line with two origins. This space is created by replacing the origin of the real line with two points, an open neighborhood of either of which includes all nonzero numbers in some open interval centered at zero. This space is not Hausdorff because the two origins cannot be separated.

Compactness and countability axioms

A manifold is metrizable if and only if it is paracompact. The long line is an example a normal Hausdorff 1-dimensional topological manifold that is not metrizable nor paracompact. Since metrizability is such a desirable property for a topological space, it is common to add paracompactness to the definition of a manifold. In any case, non-paracompact manifolds are generally regarded as pathological. An example of a non-paracompact manifold is given by the long line. Paracompact manifolds have all the topological properties of metric spaces. In particular, they are perfectly normal Hausdorff spaces.

Manifolds are also commonly required to be second-countable. This is precisely the condition required to ensure that the manifold embeds in some finite-dimensional Euclidean space. For any manifold the properties of being second-countable, Lindelöf, and σ-compact are all equivalent.

Every second-countable manifold is paracompact, but not vice versa. However, the converse is nearly true: a paracompact manifold is second-countable if and only if it has a countable number of connected components. In particular, a connected manifold is paracompact if and only if it is second-countable. Every second-countable manifold is separable and paracompact. Moreover, if a manifold is separable and paracompact then it is also second-countable.

Every compact manifold is second-countable and paracompact.

Dimensionality

By invariance of domain, a non-empty n-manifold cannot be an m-manifold for nm.[6] The dimension of a non-empty n-manifold is n. Being an n-manifold is a topological property, meaning that any topological space homeomorphic to an n-manifold is also an n-manifold.[7]

Coordinate charts

By definition, every point of a locally Euclidean space has a neighborhood homeomorphic to an open subset of . Such neighborhoods are called Euclidean neighborhoods. It follows from invariance of domain that Euclidean neighborhoods are always open sets. One can always find Euclidean neighborhoods that are homeomorphic to "nice" open sets in . Indeed, a space M is locally Euclidean if and only if either of the following equivalent conditions holds:

  • every point of M has a neighborhood homeomorphic to an open ball in .
  • every point of M has a neighborhood homeomorphic to itself.

A Euclidean neighborhood homeomorphic to an open ball in is called a Euclidean ball. Euclidean balls form a basis for the topology of a locally Euclidean space.

For any Euclidean neighborhood U, a homeomorphism is called a coordinate chart on U (although the word chart is frequently used to refer to the domain or range of such a map). A space M is locally Euclidean if and only if it can be covered by Euclidean neighborhoods. A set of Euclidean neighborhoods that cover M, together with their coordinate charts, is called an atlas on M. (The terminology comes from an analogy with cartography whereby a spherical globe can be described by an atlas of flat maps or charts).

Given two charts and with overlapping domains U and V, there is a transition function

Such a map is a homeomorphism between open subsets of . That is, coordinate charts agree on overlaps up to homeomorphism. Different types of manifolds can be defined by placing restrictions on types of transition maps allowed. For example, for differentiable manifolds the transition maps are required to be smooth.

Classification of manifolds

Discrete spaces (0-Manifold)

A 0-manifold is just a discrete space. A discrete space is second-countable if and only if it is countable.[7]

Curves (1-Manifold)

Every nonempty, paracompact, connected 1-manifold is homeomorphic either to R or the circle.[7]

Surfaces (2-Manifold)

The sphere is a 2-manifold.

Every nonempty, compact, connected 2-manifold (or surface) is homeomorphic to the sphere, a connected sum of tori, or a connected sum of projective planes.[8]

Volumes (3-Manifold)

A classification of 3-manifolds results from Thurston's geometrization conjecture, proven by Grigori Perelman in 2003. More specifically, Perelman's results provide an algorithm for deciding if two three-manifolds are homeomorphic to each other.[9]

General n-manifold

The full classification of n-manifolds for n greater than three is known to be impossible; it is at least as hard as the word problem in group theory, which is known to be algorithmically undecidable.[10]

In fact, there is no algorithm for deciding whether a given manifold is simply connected. There is, however, a classification of simply connected manifolds of dimension ≥ 5.[11][12]

Manifolds with boundary

A slightly more general concept is sometimes useful. A topological manifold with boundary is a Hausdorff space in which every point has a neighborhood homeomorphic to an open subset of Euclidean half-space (for a fixed n):

Every topological manifold is a topological manifold with boundary, but not vice versa.[7]

Constructions

There are several methods of creating manifolds from other manifolds.

Product manifolds

If M is an m-manifold and N is an n-manifold, the Cartesian product M×N is a (m+n)-manifold when given the product topology.[13]

Disjoint union

The disjoint union of a countable family of n-manifolds is a n-manifold (the pieces must all have the same dimension).[7]

Connected sum

The connected sum of two n-manifolds is defined by removing an open ball from each manifold and taking the quotient of the disjoint union of the resulting manifolds with boundary, with the quotient taken with regards to a homeomorphism between the boundary spheres of the removed balls. This results in another n-manifold.[7]

Submanifold

Any open subset of an n-manifold is an n-manifold with the subspace topology.[13]

Footnotes

  1. ^ Rajendra Bhatia (6 June 2011). Proceedings of the International Congress of Mathematicians: Hyderabad, August 19-27, 2010. World Scientific. pp. 477–. ISBN 978-981-4324-35-9.
  2. ^ a b John M. Lee (6 April 2006). Introduction to Topological Manifolds. Springer Science & Business Media. ISBN 978-0-387-22727-6.
  3. ^ Thierry Aubin (2001). A Course in Differential Geometry. American Mathematical Soc. pp. 25–. ISBN 978-0-8218-7214-7.
  4. ^ Topospaces subwiki, Locally compact Hausdorff implies completely regular
  5. ^ Stack Exchange, Hausdorff locally compact and second countable is sigma-compact
  6. ^ Tammo tom Dieck (2008). Algebraic Topology. European Mathematical Society. pp. 249–. ISBN 978-3-03719-048-7.
  7. ^ a b c d e f John Lee (25 December 2010). Introduction to Topological Manifolds. Springer Science & Business Media. pp. 64–. ISBN 978-1-4419-7940-7.
  8. ^ Jean Gallier; Dianna Xu (5 February 2013). A Guide to the Classification Theorem for Compact Surfaces. Springer Science & Business Media. ISBN 978-3-642-34364-3.
  9. ^ Geometrisation of 3-manifolds. European Mathematical Society. 2010. ISBN 978-3-03719-082-1.
  10. ^ Lawrence Conlon (17 April 2013). Differentiable Manifolds: A First Course. Springer Science & Business Media. pp. 90–. ISBN 978-1-4757-2284-0.
  11. ^ Žubr A.V. (1988) Classification of simply-connected topological 6-manifolds. In: Viro O.Y., Vershik A.M. (eds) Topology and Geometry — Rohlin Seminar. Lecture Notes in Mathematics, vol 1346. Springer, Berlin, Heidelberg
  12. ^ Barden, D. "Simply Connected Five-Manifolds." Annals of Mathematics, vol. 82, no. 3, 1965, pp. 365–385. JSTOR, www.jstor.org/stable/1970702.
  13. ^ a b Jeffrey Lee; Jeffrey Marc Lee (2009). Manifolds and Differential Geometry. American Mathematical Soc. pp. 7–. ISBN 978-0-8218-4815-9.

References

Read other articles:

American college football rivalry Iron Bowl Alabama Crimson Tide Auburn Tigers SportCollege footballFirst meetingFebruary 22, 1893Auburn 32, Alabama 22Latest meetingNovember 25, 2023Alabama 27, Auburn 24Next meetingNovember 30, 2024TrophyJames E. Foy, V-ODK Sportsmanship TrophyStatisticsMeetings total88All-time seriesAlabama leads 50–37–1 (.569)[1]Largest victoryAlabama, 55–0 (1948)Longest win streakAlabama, 9 (1973–1981)Current win streakAlabama, 4 (2020–present) 150km100mi...

 

Surah ke-92al-Lail MalamTeks ArabTerjemahan KemenagKlasifikasiMakkiyahJuzJuz 30Jumlah ruku1 ruku'Jumlah ayat21 ayat Surah Al-Lail (bahasa Arab:الّيل, al-Layl, Malam) adalah surah ke-92 dalam al-Qur'an. Surah ini terdiri atas 21 ayat, termasuk golongan surah Makkiyah, diturunkan sesudah Surah Al-A’la. Surat ini dinamai Al Lail (malam), diambil dari perkataan Al Lail yang terdapat pada ayat pertama surat ini. Terjemahan Dengan nama Allah, Yang Maha Pengasih, Maha Penyayang. Demi malam ya...

 

Donkey Kong 64 PublikasiNA: 22 November 1999[2]PAL: 6 Desember 1999[1]JP: 10 Desember 1999GenrePlatform, adventureKarakterDonkey Kong (karakter), Diddy Kong, Lanky Kong (en), Chunky Kong (en) dan Tiny Kong (en) Latar tempatDonkey Kong universe (en) Karakteristik teknisPlatformNintendo 64 Modepermainan video multipemain dan Permainan video pemain tunggal FormatROM cartridge dan unduhan digital Metode inputNintendo 64 controller (en) Format kode Daftar 30 Informasi pengembangPen...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Mike van Duinen Informasi pribadiNama lengkap Mike van DuinenTanggal lahir 06 November 1991 (umur 32)Tempat lahir Den Haag, BelandaTinggi 1,85 m (6 ft 1 in)Posisi bermain PenyerangInformasi klubKlub saat ini ADO Den HaagNomor 19Karier junior Die Haghe OLIVEO ADO Den HaagKarier senior*Tahun Tim Tampil (Gol)2011– ADO Den Haag 16 (3) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per Desember 2011 Mike van Duinen (pelafalan dalam baha...

 

衆議院の選挙区としての東京15区については「東京都第15区」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 東京15区 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) الطفل السمكةEl niño pez (بالإسبانية) معلومات عامةالصنف الفني فيلم دراما[1][2] — فيلم رومانسي[1][3][2] — فيلم إثارة[1][3][2] — فيلم متعلّ�...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الأداء الصوتي في اليابان أو التمثيل الصوتي في اليابان (بالإنجليزية: Voice acting in Japan)‏ هو القيام بأداء تمثيل صوتي علي سبيل الرواية، أو كممثل أو مؤدي صوتي في المسرحيات الإذاعة (الر...

 

خاتم تخرج [الإنجليزية] يحمل نقش درجة الماجستير في العلوم. ماجستير العلوم (باللاتينية: Magister Scientiae)‏ هي شهادة جامعية تخص الحصول على درجة الماجستير في مجال العلوم التي تمنحها الجامعات في العديد من البلدان.[1] على النقيض من ماجستير الآداب، فماجستير العلوم يؤهل الطالب لمتابع...

Political party in Lithuania Order and Justice Tvarka ir teisingumasAbbreviationTTLeaderRemigijus Žemaitaitis (last)FounderRolandas PaksasFounded9 March 2002[1]Dissolved6 June 2020Split fromLiberal Union of Lithuania[1]Merged intoFreedom and Justice[2]HeadquartersGedimino pr. 10 / Totorių g. 1, VilniusMembership12,043 (2018)[3]IdeologyNational conservatism[4][5][6]Right-wing populism[7]Soft Euroscepticism[8 ...

 

SpaceX Dragon 2 Crew Dragon acercándose a la ISS en marzo de 2019, durante la Demo-1 Fabricante SpaceXPaís de origen Estados UnidosOperador SpaceXAplicaciones Transporte de carga y tripulación a la ISS, la órbita baja terrestre y órbita lunar. EspecificacionesVida de diseño * 1 semana en vuelo libre[1]​ 210 días acoplado a la ISS[2]​Masa en seco 9525 kg[3]​Capacidad de carga * 6000 kg a la órbita[4]​ 3000 kg de vuelta[4]​ 800 kg de des...

 

Pour l’article homonyme, voir an-Nasir. Ne doit pas être confondu avec Sharaf al-Dīn al-Tūsī. Nasir al-Din al-TusiBiographieNaissance Février 1201Tous (État ismaélite nizârite (en))Décès Juin 1274 (à 73 ans)Près de BagdadSépulture Mausolée d' Al-KadhimiyaNom dans la langue maternelle نصيرالدین طوسیNom de naissance مُحمد بن مُحمد بن الحسن الطُوسيÉpoque Âge d'or islamiqueActivités Philosophe, théologien, dâ`i, marja-e taqlid, tra...

Ryo KaseKase Ryo dari Lying to Mom pada Upacara Pembukaan Festival Film Internasional Tokyo 2018Nama asal加瀬 亮Lahir09 November 1974 (umur 49)Yokohama, JepangKebangsaanJepangPekerjaanPemeranTahun aktif2000–sekarangAgenAnore Inc.Dikenal atas Letters from Iwo Jima Hill of Freedom Outrage Like Someone in Love Restless Silence Tinggi174 m (570 ft 10+1⁄2 in)Situs webwww.anore.co.jp/kase/english/ (2008) Blue Ribbon Awards for Best Actor (en) Ryo Kase (加�...

 

 Documentation[voir] [modifier] [historique] [purger] Ce modèle respecte les conventions des Infobox V2. Les infobox version 2 améliorent l’aspect, la simplicité et la flexibilité des infobox de Wikipédia. L’intérêt est d’harmoniser l’apparence par des feuilles de style en cascade, des pictogrammes thématiques, une simplification du code ainsi que la possibilité de généricité qui consiste à fusionner plusieurs modèles en un seul ...

 

Voce principale: Borussia Verein für Leibesübungen 1900 Mönchengladbach. Borussia Verein für Leibesübungen 1900 MönchengladbachStagione 1965-1966Sport calcio Squadra Borussia M'gladbach Allenatore Hennes Weisweiler Bundesliga13º posto Coppa di GermaniaPrimo turno Maggiori presenzeCampionato: Rupp, Vogts (34)Totale: Rupp, Vogts (36) Miglior marcatoreCampionato: Rupp (16)Totale: Rupp (20) StadioBökelbergstadion Maggior numero di spettatori35 000 vs. Colonia, Monaco 1860 Minor...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 板門店宣言 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年4月) 板門店で共同宣言を発表する両首脳 板門店の軍...

 

Questa voce sull'argomento calciatori georgiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Giorgi IluridzeNazionalità Georgia Altezza180 cm Peso70 kg Calcio RuoloAttaccante Squadra svincolato CarrieraGiovanili 2001-2010 Dinamo Tbilisi2010-2011 Anži Squadre di club1 2010-2011 Anži5 (0)2012-2013 Dila Gori18 (2)2013-2014 Hajduk Spalato13 (1)2014 Ermīs Aradippou0...

 

Town in California, United States Los Gatos redirects here. For other uses, see Los Gatos (disambiguation). Town in California, United StatesLos Gatos, CaliforniaTownLa Cañada Building in April 2016 FlagSealLocation in Santa Clara County and the state of CaliforniaLos GatosLocation in the United StatesShow map of San Francisco Bay AreaLos GatosLos Gatos (California)Show map of CaliforniaLos GatosLos Gatos (the United States)Show map of the United StatesCoordinates: 37°14′10″N 121°57′...

Austrian military leader GrafFranz Moritz von LacyCount von LacyBorn(1725-10-21)21 October 1725Saint Petersburg, Russian EmpireDied24 November 1801(1801-11-24) (aged 76)Vienna, Archduchy of Austria, Holy Roman EmpireBuriedNeuwaldegg, ViennaAllegiance Holy Roman EmpireService/branchHabsburg EmpireYears of service1743–1790sBattles/wars War of the Austrian Succession Battle of Velletri Seven Years' War Battle of Lobositz Battle of Prague Battle of Breslau Battle of Leuthen Battl...

 

Érudit à sa table de travailArtiste RembrandtDate 1641Type PortraitMatériau huile sur panneau de bois (d)Dimensions (H × L) 105,7 × 76,4 cmPendant Jeune Fille au cadreMouvement Âge d'or de la peinture néerlandaiseNo d’inventaire ZKW 3905Localisation Palais royal de Varsovie, Munich Central Collecting Pointmodifier - modifier le code - modifier Wikidata L'Érudit au pupitre ou Savant à sa table de travail (ou encore Le Père de la mariée juive) est un tableau...