Lindelöf space

In mathematics, a Lindelöf space[1][2] is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

A hereditarily Lindelöf space[3] is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning.[4] The term hereditarily Lindelöf is more common and unambiguous.

Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf.

Properties of Lindelöf spaces

  • Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf.
  • A Lindelöf space is compact if and only if it is countably compact.
  • Every second-countable space is Lindelöf,[5] but not conversely. For example, there are many compact spaces that are not second-countable.
  • A metric space is Lindelöf if and only if it is separable, and if and only if it is second-countable.[6]
  • Every regular Lindelöf space is normal.[7]
  • Every regular Lindelöf space is paracompact.[8]
  • A countable union of Lindelöf subspaces of a topological space is Lindelöf.
  • Every closed subspace of a Lindelöf space is Lindelöf.[9] Consequently, every Fσ set in a Lindelöf space is Lindelöf.
  • Arbitrary subspaces of a Lindelöf space need not be Lindelöf.[10]
  • The continuous image of a Lindelöf space is Lindelöf.[11]
  • The product of a Lindelöf space and a compact space is Lindelöf.[12]
  • The product of a Lindelöf space and a σ-compact space is Lindelöf. This is a corollary to the previous property.
  • The product of two Lindelöf spaces need not be Lindelöf. For example, the Sorgenfrey line is Lindelöf, but the Sorgenfrey plane is not Lindelöf.[13]
  • In a Lindelöf space, every locally finite family of nonempty subsets is at most countable.

Properties of hereditarily Lindelöf spaces

  • A space is hereditarily Lindelöf if and only if every open subspace of it is Lindelöf.[14]
  • Hereditarily Lindelöf spaces are closed under taking countable unions, subspaces, and continuous images.
  • A regular Lindelöf space is hereditarily Lindelöf if and only if it is perfectly normal.[15][16]
  • Every second-countable space is hereditarily Lindelöf.
  • Every countable space is hereditarily Lindelöf.
  • Every Suslin space is hereditarily Lindelöf.
  • Every Radon measure on a hereditarily Lindelöf space is moderated.

Example: the Sorgenfrey plane is not Lindelöf

The product of Lindelöf spaces is not necessarily Lindelöf. The usual example of this is the Sorgenfrey plane which is the product of the real line under the half-open interval topology with itself. Open sets in the Sorgenfrey plane are unions of half-open rectangles that include the south and west edges and omit the north and east edges, including the northwest, northeast, and southeast corners. The antidiagonal of is the set of points such that

Consider the open covering of which consists of:

  1. The set of all rectangles where is on the antidiagonal.
  2. The set of all rectangles where is on the antidiagonal.

The thing to notice here is that each point on the antidiagonal is contained in exactly one set of the covering, so all the (uncountably many) sets of item (2) above are needed.

Another way to see that is not Lindelöf is to note that the antidiagonal defines a closed and uncountable discrete subspace of This subspace is not Lindelöf, and so the whole space cannot be Lindelöf either (as closed subspaces of Lindelöf spaces are also Lindelöf).

Generalisation

The following definition generalises the definitions of compact and Lindelöf: a topological space is -compact (or -Lindelöf), where is any cardinal, if every open cover has a subcover of cardinality strictly less than . Compact is then -compact and Lindelöf is then -compact.

The Lindelöf degree, or Lindelöf number is the smallest cardinal such that every open cover of the space has a subcover of size at most In this notation, is Lindelöf if The Lindelöf number as defined above does not distinguish between compact spaces and Lindelöf non-compact spaces. Some authors gave the name Lindelöf number to a different notion: the smallest cardinal such that every open cover of the space has a subcover of size strictly less than [17] In this latter (and less used) sense the Lindelöf number is the smallest cardinal such that a topological space is -compact. This notion is sometimes also called the compactness degree of the space [18]

See also

  • Axioms of countability – property of certain mathematical objects (usually in a category) that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not probably exist.
  • Lindelöf's lemma – lemma that every open subset of the reals is a countable union of open intervals

Notes

  1. ^ Steen & Seebach, p. 19
  2. ^ Willard, Def. 16.5, p. 110
  3. ^ Willard, 16E, p. 114
  4. ^ Ganster, M. (1989). "A note on strongly Lindelöf spaces" (PDF). Technische Universität Graz. S2CID 208002077.
  5. ^ Willard, theorem 16.9, p. 111
  6. ^ Willard, theorem 16.11, p. 112
  7. ^ Willard, theorem 16.8, p. 111
  8. ^ Michael, Ernest (1953). "A note on paracompact spaces". Proceedings of the American Mathematical Society. 4 (5): 831–838. doi:10.1090/S0002-9939-1953-0056905-8. MR 0056905.
  9. ^ Willard, theorem 16.6, p. 110
  10. ^ "Examples of Lindelof Spaces that are not Hereditarily Lindelof". 15 April 2012.
  11. ^ Willard, theorem 16.6, p. 110
  12. ^ "The Tube Lemma". 2 May 2011.
  13. ^ "A Note on the Sorgenfrey Line". 27 September 2009.
  14. ^ Engelking, 3.8.A(b), p. 194
  15. ^ Engelking, 3.8.A(c), p. 194
  16. ^ "General topology - Another question on hereditarily lindelöf space".
  17. ^ Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences, American Mathematical Society, 1975, p. 4, retrievable on Google Books [1]
  18. ^ Hušek, Miroslav (1969). "The class of k-compact spaces is simple". Mathematische Zeitschrift. 110 (2): 123–126. doi:10.1007/BF01124977. MR 0244947. S2CID 120212653..

References

Further reading

Read other articles:

Harold KrotoLahir7 Oktober 1939 (umur 84)Wisbech, Cambridgeshire, InggrisKebangsaanBritania RayaAlmamaterUniversitas SheffieldDikenal atasbuckminsterfullerenePenghargaanPenghargaan Nobel dalam Kimia tahun 1996Karier ilmiahBidangKimia Sir Harold Walter Harry Kroto FRS (lahir 7 Oktober 1939 sebagai Harold Krotoschiner) ialah seorang kimiawan Inggris berdarah Polandia-Jerman dan salah satu dari 3 tokoh yang memenangkan Penghargaan Nobel Kimia pada tahun 1996. Pendidikan dan karier 1947 - 5...

 

 

Vladislav Surkov Wakil Perdana Menteri Rusia — Kepala Kantor Eksekutif PemerintahMasa jabatan21 Mei 2012 – 8 Mei 2013Wakil Perdana Menteri RusiaMasa jabatan27 Desember 2011 – 21 Mei 2012Wakil Pertama Kepala Staf Pemerintahan Kepresidenan RusiaMasa jabatan15 Mei 2008 – 27 Desember 2011Wakil Kepala Staf Pemerintahan Kepresidenan RusiaMasa jabatan3 Agustus 1999 – 12 Mei 2008 Informasi pribadiLahirVladislav Yuryevich SurkovВладислав Юрье...

 

 

Oscars dan The Oscar dialihkan ke halaman ini. Untuk other uses, lihat Oscar. Academy AwardsPenghargaan terkini: Academy Awards ke-96Patung Academy Award (Oscar)Diberikan kepadaPrestasi dalam industri film Amerika dan InternasionalNegaraAmerika SerikatDipersembahkan olehAcademy of Motion Picture Arts and SciencesDiberikan perdana16 Mei 1929; 94 tahun lalu (1929-05-16)Situs webwww.oscars.org/oscarsSiaran televisi/radioSaluranDaftar penyiar Academy Award atau disebut juga piala Oscar adala...

Halaman ini berisi artikel tentang warna. Untuk tumbuhan, lihat Kuma-kuma. Kuning Cempaka Bubuk kuma-kuma     Koordinat warnaTriplet hex#F4C430sRGBB    (r, g, b)(244, 196, 48)CMYKH   (c, m, y, k)(4, 23, 81, 5)HSV       (h, s, v)(45°, 80%, 96%)SumberMaerz dan Paul[1]B: Dinormalkan ke [0–255] (bita)H: Dinormalkan ke [0–100] (ratusan) Kuning cempaka atau Kurkuma (Inggris: Saffron yellowcode: en is deprecated ) adalah warna yang menyer...

 

 

Prof. dr.Jurnalis UddinPAK.Lahir10 Juli 1937 (umur 86)Sulit Air, Solok, Sumatera Barat, Hindia BelandaKebangsaanIndonesiaAlmamaterUniversitas Gadjah MadaUniversitas IndonesiaPekerjaanAhli kesehatan, pengajarDikenal atasPendiri Yayasan YARSISuami/istriZoraida Jurnalis Jurnalis Uddin (lahir 10 Juli 1937) adalah seorang ahli kesehatan dan pengajar Indonesia. Ia bersama beberapa orang koleganya, seperti Asri Rasad, merupakan pendiri Yayasan YARSI yang mengelola beberapa lembaga pendidikan d...

 

 

Penobatan George V dan MaryRaja dan Ratu dalam jubah penobatan, potret resmi penobatan oleh Emery WalkerTanggal22 Juni 1911 (1911-06-22)LokasiWestminster Abbey, London, EnglandPeserta/Pihak terlibat Raja George V Ratu Mary Pejabat Besar Negara Uskup Agung dan asisten uskup dari Gereja Inggris Garter Principal King of Arms Penobatan George V dan istrinya Mary sebagai Raja dan Ratu dari Britania Raya dan Dominion Britania Raya. Penobatan ini sekaligus sebagai penobatan Kaisar dan Permaisur...

This is a list of lists of websites, sorted by type and subject, including comparisons and other lists of lists. By type Academic databases and search engines BitTorrent (comparison) Blogs Chat Databases Dating (comparison) Dictionaries Encyclopedias Forums Notorious markets Photo sharing Question-and-answer Satirical Search engines Social bookmarking Social networking Defunct social networking Tor onion services Video platforms Webcomics Web directories Wikis By subject Biology Biodiversity...

 

 

Service agency that provides temporary residence for homeless people The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (January 2019) (Learn how and when to remove this template message) The Peachtree-Pine shelter in Atlanta, Georgia, US Homeless shelters are a type of homeless service agency which pro...

 

 

Museo diocesano Leonello Barsotti UbicazioneStato Italia LocalitàLivorno IndirizzoVia del Seminario 61 Coordinate43°33′13.61″N 10°19′04.22″E / 43.553781°N 10.317839°E43.553781; 10.317839Coordinate: 43°33′13.61″N 10°19′04.22″E / 43.553781°N 10.317839°E43.553781; 10.317839 CaratteristicheTipoArte Istituzione2008 Visitatori300 (2019) e (2022) Sito web Modifica dati su Wikidata · Manuale Il Museo diocesano Leonello Barsotti è un...

Helen DahmHelen Dahm en Inde, 1938BiographieNaissance 21 mai 1878Egelshofen (d)Décès 24 mai 1968 (à 90 ans)MännedorfSépulture Oetwil am SeeNationalité suisseActivité PeintrePériode d'activité 1898-1968Autres informationsMouvement ExpressionnismeVue de la sépulture.modifier - modifier le code - modifier Wikidata Pour les articles homonymes, voir Dahm. Helen Dahm (ou Helene Dahm ; 21 mai 1878 à Egelshofen - 24 mai 1968 à Männedorf) est une peintre suisse expressionniste. ...

 

 

Min Ko NaingLahirPaw Oo Tun18 Oktober 1962 (umur 61)Mudon, Negara Bagian Mon, BurmaPendidikanUniversitas Seni & Sains Rangoon[1]OrganisasiFederasi Serikat Pelajar Seluruh BurmaKelompok Pelajar Generasi 88Serikat Perdamaian dan Terbuka Generasi 88Gerakan politikPemberontakan 8888Orang tuaU Thet Nyunt, Daw Hla Kyi[1]PenghargaanPenghargaan Gwangju untuk Hak Asasi Manusia (2009)Civil Courage Prize (2005)John Humphrey Freedom Award (1999)Bintang Jasa Nasional (2015)[2...

 

 

Men's prison in London, England HMP WandsworthLocationWandsworth,London, SW18Security classAdult Male/Category B LocalPopulation1,562Opened1851; 173 years ago (1851)Managed byHM Prison ServicesGovernorKatie Price[1]WebsiteWandsworth at justice.gov.uk HM Prison Wandsworth is a Category B men's prison at Wandsworth in the London Borough of Wandsworth, South West London, England. It is operated by His Majesty's Prison Service and is one of the largest prisons in the UK....

Not to be confused with Stratford, Connecticut; Stafford, Connecticut; or Stanford, California. City in Connecticut, United StatesStamfordCityClockwise, from top: Downtown Stamford, Harbor Point, Stamford Museum & Nature Center, Stamford Center for the Arts, Fish Church, One Stamford Forum, Stamford Transportation Center, Old Town Hall, One Landmark Square FlagSealNickname(s): The City That Works, Lock CityMotto: Innovating Since 1641 Fairfield County and Connecticut W...

 

 

Greek Civil War clashes This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dekemvriana – news · newspapers · books · scholar · JSTOR (April 2013) (Learn how and when to remove this message) DekemvrianaPart of the Greek Civil WarA Sherman tank and troops from the 5th (Scottish) Parachute Battalion, British 2nd P...

 

 

For the Australian band, see Icehouse (band).For the song featured in the album, see Icehouse (song). 1980 studio album by FlowersIcehouse1980 Australian release (Regular Records)Studio album by FlowersReleased10 October 1980 (1980-10-10)RecordedJanuary 1980StudioStudios 301 (Sydney), Paradise (Sydney)GenreNew waveLength41:5037:24Label Regular Chrysalis Warner Music Producer Cameron Allan Iva Davies Flowers chronology Icehouse(1980) Primitive Man(1982) Singles from Iceh...

Université de SheffieldHistoireFondation 19051897 University College of SheffieldStatutType Université publiqueNom officiel University of SheffieldRégime linguistique AnglaisPrésident Sir Peter MiddletonDevise Rerum cognoscere causas[1]Membre de Red brick university, Russell GroupSite web www.sheffield.ac.ukChiffres-clésÉtudiants Environ 25 700LocalisationPays Royaume-UniVille Sheffield Géolocalisation sur la carte : Angleterre Géolocalisation sur la carte : Yorkshire d...

 

 

Stasiun Shinonoi篠ノ井駅StasiunShinonoi, Desember 2008LokasiShinonoifusetakada, Nagano-shi, Nagano-ken 388-8007 JepangKoordinat36°34′40″N 138°08′16″E / 36.5777°N 138.1377°E / 36.5777; 138.1377Ketinggian356.2 meter[1]Operator JR East Shinano Railway Jalur ■Jalur Utama Shinetsu ■ Jalur Shinonoi ■ Jalur Kereta Shinano Jumlah peron1 peron sisi + 1 peron pulauInformasi lainSitus webSitus web resmiSejarahDibuka15 Agustus 1888PenumpangFY2015...

 

 

1891 short story by Robert Louis Stevenson For other uses, see The Bottle Imp (disambiguation). William Hatherell's 1905 illustration of the story; the bottle is presented to Keawe by its previous owner The Bottle Imp is an 1891 short story by the Scottish author Robert Louis Stevenson usually found in the short story collection Island Nights' Entertainments. It was first published in the New York Herald (February–March 1891) and Black and White magazine (London, March–April 1891). In it,...

Romagnol Rumagnòl Pengucapan[rumɐˈɲoːl]/[rumɐˈɲoə̯l]Dituturkan diItalia, San MarinoWilayahUtamanya Emilia-Romagna, San Marino, MarcheEtnis1,1 juta (2008)[1]PenuturTidak diketahui, ca 430.000, diasumsikan Romagnol dan Emilia memiliki jumlah yang sama (2006)[2] Perincian data penutur Jumlah penutur beserta (jika ada) metode pengambilan, jenis, tanggal, dan tempat. 1.100.000 (2008) Rumpun bahasaIndo-Eropa ItalikLatino-FaliskiRomanItalo-BaratRoman Barat...

 

 

ESPNEWSCaractéristiquesCréation 1er novembre 1996Propriétaire The Walt Disney Company (80 %)Hearst Corporation (20 %)Langue AnglaisPays États-UnisSiège social Bristol, ConnecticutDiffusionSatellite DirecTV : 207 (SD/HD)Dish Network : 142 (SD), 5301 (HD)Câble Verizon Fios : 72 (SD), 572 (HD)IPTV mio TV (Singapour) : 116 (SD/HD)now TV (Hong Kong) : TBAmodifier - modifier le code - modifier Wikidata ESPNEWS[1] est une chaîne d'information sportive en con...