Lens space

The lens space L(2;5) consists of the "lens" between the red and yellow walls using a double rotation that aligns the slits. Five "lens" regions are shown in the picture in total.
The double-rotation that identifies the walls of the lens space. In this stereographic view, the double-rotation rotates both around the z-axis and along it.

A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions.

In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and , both of which can be obtained as above, are not counted as they are considered trivial special cases.

The three-dimensional lens spaces were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces and were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have the same homotopy type. Other lens spaces (such as and ) have even the same homotopy type (and thus isomorphic fundamental groups and homology), but not the same homeomorphism type; they can thus be seen as the birth of geometric topology of manifolds as distinct from algebraic topology.

There is a complete classification of three-dimensional lens spaces, by fundamental group and Reidemeister torsion.

Definition

The three-dimensional lens spaces are quotients of by -actions. More precisely, let and be coprime integers and consider as the unit sphere in . Then the -action on generated by the homeomorphism

is free. The resulting quotient space is called the lens space .

This can be generalized to higher dimensions as follows: Let be integers such that the are coprime to and consider as the unit sphere in . The lens space is the quotient of by the free -action generated by

In three dimensions we have

Properties

The fundamental group of all the lens spaces is independent of the .

The homology of the lens space is given by[1]

Lens spaces are locally symmetric spaces, but not (fully) symmetric, with the exception of which is symmetric. (Locally symmetric spaces are symmetric spaces that are quotiented by an isometry that has no fixed points; lens spaces meet this definition.)

Alternative definitions of three-dimensional lens spaces

The three dimensional lens space is often defined to be a solid ball with the following identification: first mark p equally spaced points on the equator of the solid ball, denote them to , then on the boundary of the ball, draw geodesic lines connecting the points to the north and south pole. Now identify spherical triangles by identifying the north pole to the south pole and the points with and with . The resulting space is homeomorphic to the lens space .

Another related definition is to view the solid ball as the following solid bipyramid: construct a planar regular p sided polygon. Put two points n and s directly above and below the center of the polygon. Construct the bipyramid by joining each point of the regular p sided polygon to n and s. Fill in the bipyramid to make it solid and give the triangles on the boundary the same identification as above.

Classification of 3-dimensional lens spaces

Classifications up to homeomorphism and homotopy equivalence are known, as follows. The three-dimensional spaces and are:

  1. homotopy equivalent if and only if for some ;
  2. homeomorphic if and only if .

If as in case 2., they are "obviously" homeomorphic, as one can easily produce a homeomorphism. It is harder to show that these are the only homeomorphic lens spaces.

The invariant that gives the homotopy classification of 3-dimensional lens spaces is the torsion linking form.

The homeomorphism classification is more subtle, and is given by Reidemeister torsion. This was given in (Reidemeister 1935) as a classification up to PL homeomorphism, but it was shown in (Brody 1960) to be a homeomorphism classification. In modern terms, lens spaces are determined by simple homotopy type, and there are no normal invariants (like characteristic classes) or surgery obstruction.

A knot-theoretic classification is given in (Przytycki & Yasukhara 2003): let C be a closed curve in the lens space which lifts to a knot in the universal cover of the lens space. If the lifted knot has a trivial Alexander polynomial, compute the torsion linking form on the pair (C,C) – then this gives the homeomorphism classification.

Another invariant is the homotopy type of the configuration spaces – (Salvatore & Longoni 2005) showed that homotopy equivalent but not homeomorphic lens spaces may have configuration spaces with different homotopy types, which can be detected by different Massey products.

See also

References

  1. ^ Hatcher 2002, p. 144
  • Glen Bredon, Topology and Geometry, Springer Graduate Texts in Mathematics 139, 1993.
  • Cohen, Marshall M., A Course in Simple-Homotopy Theory, Springer Graduate Texts in Mathematics 10, 1973.
  • Brody, E. J. (1960), "The topological classification of the lens spaces", Annals of Mathematics, 2, 71 (1): 163–184, doi:10.2307/1969884, JSTOR 1969884
  • Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • Allen Hatcher, Notes on basic 3-manifold topology. (Explains classification of L(p,q) up to homeomorphism.)
  • Przytycki, Józef H.; Yasukhara, Akira (2003), "Symmetry of Links and Classification of Lens Spaces", Geometriae Dedicata, 98 (1): 57–61, doi:10.1023/A:10240, MR 1988423
  • Reidemeister, Kurt (1935), "Homotopieringe und Linsenräume", Abh. Math. Sem. Univ. Hamburg, 11 (1): 102–109, doi:10.1007/BF02940717
  • Salvatore, Paolo; Longoni, Riccardo (2005), "Configuration spaces are not homotopy invariant", Topology, 44 (2): 375–380, arXiv:math/0401075, doi:10.1016/j.top.2004.11.002
  • Herbert Seifert and William Threlfall, A textbook of topology, Pure and Applied Mathematics 89, Translated from the German edition of 1934, Academic Press Inc. New York (1980)
  • Heinrich Tietze, Ueber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. fuer Math. und Phys. 19, 1–118 (1908) (20) English translation (2008) by John Stillwell.
  • Watkins, Matthew (1990), A Short Survey of Lens Spaces (PDF) (undergraduate dissertation), archived from the original (PDF) on 2006-09-25

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2021) الحرب في أوغندا (1986–1994)الجماعات المتمردة خلال حرب 1986-1994.التاريخمارس 1986 – فبراير 1994(الصراع يدخل مرحلة جديدة منذ عام 1994)الموقعشمال وشرق ووسط وغرب أوغنداالنت�...

В'євіллерWiesviller   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Сарргемін Кантон Сарргемін-Кампань Код INSEE 57745 Поштові індекси 57200 Координати 49°04′52″ пн. ш. 7°09′56″ сх. д.H G O Висота 225 - 342 м.н.р.м. Площа 8,83 км² Населення 920 (01-2020[1]) Густота 115,4

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) تيم سيمبسون معلومات شخصية الميلاد 6 مايو 1956 (67 سنة)  أتلانتا  مواطنة الولايات المتحدة  الحياة العملية المهنة لاعب غولف  الرياضة غولف  بلد الرياضة ا

Artikel ini bukan mengenai Liga Muslim Pakistan. Liga Muslim مسلم لیگ মুসলিম লীগKetua umumMuhammad Ali JinnahDibentuk14 Agustus, 1947 Karachi, PakistanDibubarkan1958 (melalui darurat militer)Didahului olehLiga Muslim Seluruh IndiaDiteruskan olehLiga AwamiLiga Muslim PakistanKantor pusatKarachiSurat kabarDawnIdeologiNasionalisme MuslimTeori Dua BangsaWarnaHijauPemilihan umum Liga Muslim adalah penerus asli dari Liga Muslim Seluruh India yang memimpin Gerakan ...

Cet article est une ébauche concernant une localité congolaise (RDC). Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Territoire de Mahagi Route près de Katangula Administration Pays République démocratique du Congo Province Ituri Administrateurde territoire Jacques Disanola Nombrede députés 7 Démographie Population 1 885 000 hab. (2023) Densité 230 hab./km2 Langue nationale lingala, ...

South Korean actor In this Korean name, the family name is Yu. Yu Oh-seongBorn (1966-09-11) September 11, 1966 (age 57)Yeongwol County, South KoreaOther namesYoo Oh-sung Yoo Oh-seongEducationHanyang University - Theater and FilmOccupationActorYears active1992-presentFamilyYu Sang-beomKorean nameHangul유오성Hanja劉五性Revised RomanizationYu Oh-seongMcCune–ReischauerYu Osŏng Yu Oh-seong (born September 11, 1966) is a South Korean actor. He is best known for his roles in ...

1926 film by Robert Zigler Leonard The Waning SexFilm posterDirected byRobert Z. LeonardWritten byJoe Farnham (titles)F. Hugh HerbertFrederica Sagor (uncredited)Based onThe Waning Sexby Fanny and Frederic HattonProduced byHarry RapfStarringNorma ShearerConrad NagelCinematographyBen ReynoldsEdited byWilliam LeVanwayDistributed byMetro-Goldwyn-MayerRelease date September 5, 1926 (1926-09-05) Running time70 minutesCountryUnited StatesLanguageSilent (English intertitles) The Waning...

Historical U.S. House district in the state of Connecticut Connecticut's at-largeth congressional districtObsolete districtCreated1789 (first)Eliminated1960 (last)Years active1789–1837; 1903–1913; 1933–1965 During the first twenty-four Congresses (from 1789 to 1837), Connecticut elected all its Representatives in Congress from a single multi-member Connecticut at-large congressional district. Connecticut elected a varying number of representatives during this period. From its inception ...

Entwurf für einen Hack des IKEA-Regal-Systems Kallax Als IKEA-Hack [-hæk] bezeichnet man das individuelle Umgestalten von Bausatzmöbeln, insbesondere der schwedischen Möbelhauskette IKEA. Ziel hierbei ist es dabei entweder, den massenhaft verkauften Möbeln ein individuelles Design zu verleihen, oder, die Produkte für einen bestimmten Zweck passend zu machen. Dies kann durch verschiedene Maßnahmen erreicht werden. Die Bandbreite reicht von dem einfachen Benutzen von Farben oder Stoffen,...

British collector and founder of a private museum of social historyEmily WardmanEmily Wardman, creator and curator of a private museum of social history in Wetherby. (Image credit: Wetherby Historical Trust)Born1872Died9 May 1939 (aged 66–67)MonumentsBlue plaque in WetherbyOccupation(s)Collector, historian, curatorKnown forAuthor of Wetherby: Its People & Customs Emily Wardman (1872 - 9 May 1939) was a British collector and founder of a private museum of social history, no...

Species of rodent Merriam's Kangaroo Rat Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Rodentia Family: Heteromyidae Genus: Dipodomys Species: D. merriami Binomial name Dipodomys merriamiMearns, 1890 Subspecies Dipodomys merriami ambiguus Dipodomys merriami annulus Dipodomys merriami arenivagus Dipodomys merriami atronasus Dipodomys merriami brunensis Dipodomys merriami co...

Not to be confused with Baybayin. This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Filipino alphabet – news · newspapers · books · scholar · JSTOR (August 2022) The modern Filipino alphabet (Filipino: makabagong alpabetong Filipino), otherwise known as the Filipino alphabet (Filipino: alpabetong Fil...

Foto langit disaat terjadi hujan meteor. Meteor, atau yang lazim juga disebut bintang jatuh, adalah penampakan meteoroid, asteroid, atau komet yang terbakar ketika memasuki atmosfer Bumi. Penampakan tersebut disebabkan oleh panas yang dihasilkan oleh tekanan rpm (bukan oleh gesekan, sebagaimana anggapan umum sebelum ini) pada saat meteoroid memasuki atmosfer. Meteor yang sangat terang, umumnya lebih terang daripada penampakan Planet Mars dari permukaan Bumi, dapat disebut sebagai bolide. Jika...

Thai Airways International PCLบริษัท การบินไทย จำกัด (มหาชน) IATA ICAO Kode panggil TG THA THAI Didirikan29 Maret 1960Mulai beroperasi1 April 1988 (merger dengan Thai Airways Company)PenghubungBangkok-SuvarnabhumiPhuketProgram penumpang setiaRoyal Orchid PlusLounge bandara Royal First Lounge Royal Orchid Spa Royal Silk Lounge Royal Orchid Lounge AliansiStar AllianceAnak perusahaan Thai Catering Thai Cargo Thai Crew Center Thai Flight Training ...

2005 map of Worldwide Governance Indicators, which attempts to measure the extent to which agents have confidence in and abide by the rules of society Legend:   90–100th percentile*   75–90th percentile   50–75th percentile   25–50th percentile   10–25th percentile   0–10th percentile * Percentile rank indicates the percentage of countries worldwide that rate below the selected country. Based on a long-standing research p...

この項目では、クライスラーおよびタルボの乗用車について説明しています。自動車ブランドとしてのサンビームについては「サンビーム (自動車)」をご覧ください。 クライスラー・サンビーム 概要製造国 イギリス(リンウッド)販売期間 1977年 – 1981年(生産終了)デザイン ロイ・アックスボディボディタイプ 3ドアハッチバック駆動方式 後輪駆動パワートレイン�...

Raimundo de Borgoña Conde de Galicia El conde Raimundo de Borgoña según miniatura del Tumbo A del Archivo de la Catedral de Santiago de Compostela.Ejercicio 1090-1107Sucesor Urraca de LeónInformación personalNacimiento 1070BesanzónFallecimiento 24 de mayo de 1107Grajal de Campos, Reino de LeónSepultura Catedral de Santiago de CompostelaFamiliaCasa real Casa de BorgoñaDinastía Casa de IvreaPadre Guillermo I de BorgoñaMadre Estefanía de BorgoñaCónyuge Urraca I de LeónHijos Sancha ...

Species of dragonfly Somatochlora graeseri Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Odonata Infraorder: Anisoptera Family: Corduliidae Genus: Somatochlora Species: S. graeseri Binomial name Somatochlora graeseriSelys, 1887 Synonyms[1] Somatochlora borealis Bartenev, 1910 Somatochlora graeseri is a species of dragonfly in the family Corduliidae.[2][3] It is found in Asia, where it occurs in Japan (Hokkai...

NFL team season 2012 Kansas City Chiefs seasonOwnerThe Hunt familyGeneral managerScott PioliHead coachRomeo CrennelHome fieldArrowhead StadiumResultsRecord2–14Division place4th AFC WestPlayoff finishDid not qualifyPro Bowlers 6 RB Jamaal CharlesLB Tamba HaliLB Justin HoustonLB Derrick JohnsonS Eric BerryP Dustin Colquitt AP All-Pros 1 RB Jamaal Charles (2nd team) Team MVPJamaal CharlesTeam ROYDontari PoeUniform ← 2011 Chiefs seasons 2013 → The 2012 season was the ...

Companies and Intellectual Property CommissionAgency overviewJurisdictionGovernment of South AfricaHeadquartersdtic campus, 77 Meintjies Street, Sunnyside, PretoriaAnnual budgetR 698.279 million (2022/23)Minister responsibleEbrahim Patel, Minister of Trade, Industry and CompetitionAgency executiveAdv. Rory Voller, CommissionerParent departmentDepartment of Trade, Industry and CompetitionKey documentsCompanies Act, 2008Close Corporations Act, 1984Patents Act, 1978Trade Marks Act, 1993Copy...