Hypercomplex manifold

In differential geometry, a hypercomplex manifold is a manifold with the tangent bundle equipped with an action by the algebra of quaternions in such a way that the quaternions define integrable almost complex structures.

If the almost complex structures are instead not assumed to be integrable, the manifold is called quaternionic, or almost hypercomplex.[1]

Examples

Every hyperkähler manifold is also hypercomplex. The converse is not true. The Hopf surface

(with acting as a multiplication by a quaternion , ) is hypercomplex, but not Kähler, hence not hyperkähler either. To see that the Hopf surface is not Kähler, notice that it is diffeomorphic to a product hence its odd cohomology group is odd-dimensional. By Hodge decomposition, odd cohomology of a compact Kähler manifold are always even-dimensional. In fact Hidekiyo Wakakuwa proved [2] that on a compact hyperkähler manifold . Misha Verbitsky has shown that any compact hypercomplex manifold admitting a Kähler structure is also hyperkähler.[3]

In 1988, left-invariant hypercomplex structures on some compact Lie groups were constructed by the physicists Philippe Spindel, Alexander Sevrin, Walter Troost, and Antoine Van Proeyen. In 1992, Dominic Joyce rediscovered this construction, and gave a complete classification of left-invariant hypercomplex structures on compact Lie groups. Here is the complete list.

where denotes an -dimensional compact torus.

It is remarkable that any compact Lie group becomes hypercomplex after it is multiplied by a sufficiently big torus.

Basic properties

Hypercomplex manifolds as such were studied by Charles Boyer in 1988. He also proved that in real dimension 4, the only compact hypercomplex manifolds are the complex torus , the Hopf surface and the K3 surface.

Much earlier (in 1955) Morio Obata studied affine connection associated with almost hypercomplex structures (under the former terminology of Charles Ehresmann[4] of almost quaternionic structures). His construction leads to what Edmond Bonan called the Obata connection[5][6] which is torsion free, if and only if, "two" of the almost complex structures are integrable and in this case the manifold is hypercomplex.

Twistor spaces

There is a 2-dimensional sphere of quaternions satisfying . Each of these quaternions gives a complex structure on a hypercomplex manifold M. This defines an almost complex structure on the manifold , which is fibered over with fibers identified with . This complex structure is integrable, as follows from Obata's theorem (this was first explicitly proved by Dmitry Kaledin[7]). This complex manifold is called the twistor space of . If M is , then its twistor space is isomorphic to .

See also

References

  1. ^ Manev, Mancho; Sekigawa, Kouei (2005). "Some Four-Dimensional Almost Hypercomplex Pseudo-Hermitian Manifolds". In S. Dimiev and K. Sekigawa (ed.). Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics. Vol. 2005. Hackensack, NJ: World Sci. Publ. pp. 174–186. arXiv:0804.2814. doi:10.1142/9789812701763_0016. ISBN 978-981-256-390-3.
  2. ^ Wakakuwa, Hidekiyo (1958), "On Riemannian manifolds with homogeneous holonomy group Sp(n)", Tôhoku Mathematical Journal, 10 (3): 274–303, doi:10.2748/tmj/1178244665.
  3. ^ Verbitsky, Misha (2005), "Hypercomplex structures on Kaehler manifolds", GAFA, 15 (6): 1275–1283, arXiv:math/0406390, doi:10.1007/s00039-005-0537-4
  4. ^ Ehresmann, Charles (1947), "Sur la théorie des espaces fibrés", Coll. Top. Alg., Paris.
  5. ^ Bonan, Edmond (1964), "Tenseur de structure d'une variété presque quaternionienne", C. R. Acad. Sci. Paris, 259: 45–48
  6. ^ Bonan, Edmond (1967), "Sur les G-structures de type quaternionien" (PDF), Cahiers de Topologie et Géométrie Différentielle Catégoriques, 9 (4): 389–463.
  7. ^ Kaledin, Dmitry (1996). "Integrability of the twistor space for a hypercomplex manifold". arXiv:alg-geom/9612016.

Read other articles:

Alchemy Stars Publikasi17 June 2021GenreTactical role-playingBahasa Daftar Inggris, Jepang dan Tionghoa 60 Karakteristik teknisSistem operasiAndroid, iOS dan iPadOS PlatformAndroid, iOS dan iPadOS Formatunduhan digital Metode inputlayar sentuh Format kode Daftar 30 Informasi pengembangPengembangTourdog StudioKomponisAsami TachibanaPenerbitLevel InfiniteSumber kode Google Playcom.tencent.baiyeint iTunes Store1529088856 Informasi tambahanSitus webalchemystars.com Id. SubredditAlchemyStarsEN Por...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala. Honda Civic GLi hatchback 3 pintu (di Indonesia dikenal dengan nama Civic Estilo) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipert...

 

The Refinitiv Equal Weight Commodity Index (formerly known as the Continuous Commodity Index) is a major US barometer of commodity prices. The index comprises 17 commodity futures that are continuously rebalanced: cocoa, coffee, copper, corn, cotton, crude oil, gold, heating oil, live cattle, live hogs, natural gas, orange juice, platinum, silver, soybeans, Sugar No. 11, and wheat. History Continuous Commodity Index 1956–2012 The CCI stems from the original CRB Index, created in 1957. It is...

Bakmi Masakan Tionghoa adalah kuliner yang dihasilkan oleh orang Tionghoa, baik yang ada di Tiongkok, maupun yang ada di perantauan, termasuk di Indonesia. Istilah masakan Tionghoa di Tiongkok daratan juga mengacu pada variasi dari seluruh suku bangsa, agama dan tradisi yang berkembang di negara tersebut. Namun, pada umumnya masakan Tionghoa yang diperkenalkan kepada banyak bangsa di dunia mayoritas merupakan masakan etnis Han. Pengaruh masakan etnis Han ada di setiap kuliner negara-negara ti...

 

List of LGBT eventsExterior of the Stonewall Inn captured during the Pride celebrations of 2016.FrequencyAnnually, last Sunday in JuneLocation(s)New York CityInauguratedJune 28, 1970 (1970-06-28)Organized byHeritage of Pride, since 1984 Part of a series onLGBT topics       LesbianGayBisexualTransgender Culture Coming out Community African-American Dyke March Events Largest events Gay village Media Films New queer cinema Periodicals LGBT culture in...

 

Álvaro Saborío Informasi pribadiNama lengkap Álvaro Alberto Sabotagoles ChacónTanggal lahir 25 Maret 1982 (umur 42)Tempat lahir Quesada, Alajuela, Kosta RikaTinggi 1,83 m (6 ft 0 in)Posisi bermain PenyerangInformasi klubKlub saat ini Real Salt LakeNomor 15Karier junior Saltillo Soccer0000—2001 SaprissaKarier senior*Tahun Tim Tampil (Gol)2001—2006 Saprissa 151 (95)2006—2010 FC Sion 87 (36)2009—2010 → Bristol City (pinjaman) 21 (2)2010 → Real Salt Lake (pinj...

Station of the Tehran Metro Javadiyeh Metro Stationایستگاه مترو جوادیهTehran Metro StationGeneral informationLocationJavadiyeh, Districts 11-16, Tehran, Tehran CountyTehran Province, IranOperated byTehran Urban and Suburban Railways Organization (Metro)Connections Tehran BRT  BRT 4  HistoryOpened2 Ordibehesht 1393 H-Sh (22 April 2014)[1]Services Preceding station Tehran Metro Following station Rahahantowards Ghaem Zam Zamtowards Azadegan Javadiyeh Metro Stat...

 

Sebuah segitiga berwarna   dengan lingkaran dalam  , pusat lingkaran dalam ( I {\displaystyle I} ), lingkaran singgung luar  , pusat lingkaran singgung luar ( J A {\displaystyle J_{A}} , J B {\displaystyle J_{B}} , dan J C {\displaystyle J_{C}} ), garis pembagi sudut dalam berwarna   dan garis pembagi sudut berwarna  . Segitiga berwarna hijau   merupakan segitiga pusat singgung luar. Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Incircle and e...

 

تاريخ حركة تضامنمعلومات عامةالمنطقة بولندا تعديل - تعديل مصدري - تعديل ويكي بيانات غدانسك، الذكرى الخامسة والعشرون للتضامن، صيف 2005. حركة تضامن (باللغة البولندية:Solidarność، وتنطق [sɔliˈdarnɔɕt͡ɕ])، هي نقابة عمالية غير حكومية أسسها ليخ فاونسا وآخرون، في 14 آب/أغسطس 1980، في مدينة ليني...

New Basket BrindisiPallacanestro «Stella del Sud» Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Bianco e azzurro Simboli Cervo Inno I biancazzurri han bisogno di noiFranco Zuccaro Dati societari Città Brindisi Nazione  Italia Confederazione FIBA Europe Federazione FIP Campionato Serie A Fondazione 1992 Denominazione New Basket Brindisi Presidente Fernando Marino General manager Tullio Marino Allenatore Dragan Šakota Impianto PalaPentassuglia(3 534 posti) Sito web w...

 

Xiao riben Hanzi tradisional: 小日本 Hanzi sederhana: 小日本 Alih aksara Mandarin - Hanyu Pinyin: xiǎo rìběn Demonstran anti-Jepang memegang spanduk yang tertulis: [Kami] sangat mengutuk Jepang !! (強烈 譴責 小 日本 !!) selama demonstrasi anti-Jepang 2012 di Taiwan[1] Pada 18 September 2012, demonstran anti-Jepang berbaris dengan spanduk bertuliskan 1,3 miliar orang Tiongkok menginjak kurcaci Jepang (13 亿 中国 人 踏平 小 日本) di depan kedutaan bes...

 

MyNetworkTV affiliate in Mount Clemens, Michigan WADLMount Clemens–Detroit, MichiganUnited StatesCityMount Clemens, MichiganChannelsDigital: 27 (UHF)Virtual: 38BrandingMy38 WADL DetroitProgrammingAffiliations38.1: MyNetworkTVfor others, see § SubchannelsOwnershipOwnerAdell Broadcasting Corporation (sale to Mission Broadcasting pending;[1] to be operated by Nexstar Media Group under LMA[2])Sister stationsWFDF, The Word NetworkHistoryFoundedSeptember 25, 1985First air da...

Music festival in Marciac since 1978 Jazz in Marciac2018 logoGenreJazz, bluesFrequencyAnnuallyLocation(s)Marciac, Gers, Occitania FranceYears active1978-presentFoundersAndré MullerJean-Louis GuilhaumonWebsitejazzinmarciac.com Jazz in Marciac 2005 Jazz in Marciac (JIM) is a jazz festival that takes place in Marciac, Occitania, France. The festival takes place over a period of three weeks, usually from late July to mid-August. The first festival took place in 1978.[1][2]&#...

 

Provincial park in British Columbia, Canada Atna River Provincial ParkTypeState parkLocationBritish ColumbiaCoordinates53°59′29″N 127°52′03″W / 53.991308°N 127.8674911°W / 53.991308; -127.8674911Area21,092 hectaresWebsitehttps://bcparks.ca/atna-river-parkAtna River Provincial Park is a park located in Skeena District, British Columbia, Canada. It is named for the Atna River, which flows through the park.[1] It was first established on July 11, 2008,...

 

Political party in Israel Movement for Civil Rights and Peace התנועה לזכויות האזרח ולשלום‎LeaderShulamit AloniYossi SaridGabi Deus (de jure)Founded1973Dissolved1997 (de facto)Split fromAlignmentMerged intoMeretzIdeologyLiberal socialism[1][2]Civil libertarianism[3]SecularismAnti-clericalism[4]Green politics[5]Socialist feminismTwo-state solutionLabor ZionismPolitical positionLeft-wing[6]Most MKs6...

American soccer player This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jim Brown soccer, born 1908 – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this message) Jim Brown Brown lining up with the United States at the 1930 FIFA World CupPersonal informationDate...

 

Suburb of Melbourne, Victoria, AustraliaMoorabbinMelbourne, VictoriaMoorabbin Town Hall in 2024MoorabbinCoordinates37°56′28″S 145°03′29″E / 37.941°S 145.058°E / -37.941; 145.058Population6,287 (SAL 2021)[1]Postcode(s)3189Elevation37 m (121 ft)Area4.6 km2 (1.8 sq mi)Location15 km (9 mi) from MelbourneLGA(s)City of KingstonState electorate(s)BentleighFederal division(s)Isaacs Suburbs around Moorabbin: Bentleigh...

 

Catholic school in Columbia, South Carolina, United StatesCardinal NewmanAddress2945 Alpine RdColumbia, South Carolina 29223United StatesCoordinates34°04′33″N 80°55′13″W / 34.075930°N 80.920290°W / 34.075930; -80.920290InformationFormer namesUrsuline AcademyUrsuline High School for Young WomenUrsuline High SchoolCatholic High School of Columbia[2]TypeCatholic schoolMottoTruth, Integrity, and Fidelity[1]Religious affiliation(s)CatholicEstabli...

Saint-John Perse PseudonymSaint-John PerseFöddAlexis Léger 31 maj 1887 Pointe-à-Pitre, Guadeloupe, FrankrikeDöd20 september 1975 (88 år) Gienshalvön, Var, FrankrikeYrkePoet, diplomatNationalitet FrankrikeSpråkFranskaNamnteckning Alexis Léger, mer känd under pseudonymen Saint-John Perse, född 31 maj 1887 i Pointe-à-Pitre, Guadeloupe, Franska Västindien, död 20 september 1975 på Gienshalvön, Var, var en fransk författare och diplomat. Han tilldelades Nobelpriset i litteratu...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (décembre 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ?...