Hermitian manifold

In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure.

A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold. By dropping this condition, we get an almost Hermitian manifold.

On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure) that depends only on the chosen metric and the almost complex structure. This form is always non-degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an almost Kähler structure. If both the almost complex structure and the fundamental form are integrable, then we have a Kähler structure.

Formal definition

A Hermitian metric on a complex vector bundle over a smooth manifold is a smoothly varying positive-definite Hermitian form on each fiber. Such a metric can be viewed as a smooth global section of the vector bundle such that for every point in , for all , in the fiber and for all nonzero in .

A Hermitian manifold is a complex manifold with a Hermitian metric on its holomorphic tangent bundle. Likewise, an almost Hermitian manifold is an almost complex manifold with a Hermitian metric on its holomorphic tangent bundle.

On a Hermitian manifold the metric can be written in local holomorphic coordinates as where are the components of a positive-definite Hermitian matrix.

Riemannian metric and associated form

A Hermitian metric h on an (almost) complex manifold M defines a Riemannian metric g on the underlying smooth manifold. The metric g is defined to be the real part of h:

The form g is a symmetric bilinear form on TMC, the complexified tangent bundle. Since g is equal to its conjugate it is the complexification of a real form on TM. The symmetry and positive-definiteness of g on TM follow from the corresponding properties of h. In local holomorphic coordinates the metric g can be written

One can also associate to h a complex differential form ω of degree (1,1). The form ω is defined as minus the imaginary part of h:

Again since ω is equal to its conjugate it is the complexification of a real form on TM. The form ω is called variously the associated (1,1) form, the fundamental form, or the Hermitian form. In local holomorphic coordinates ω can be written

It is clear from the coordinate representations that any one of the three forms h, g, and ω uniquely determine the other two. The Riemannian metric g and associated (1,1) form ω are related by the almost complex structure J as follows for all complex tangent vectors u and v. The Hermitian metric h can be recovered from g and ω via the identity

All three forms h, g, and ω preserve the almost complex structure J. That is, for all complex tangent vectors u and v.

A Hermitian structure on an (almost) complex manifold M can therefore be specified by either

  1. a Hermitian metric h as above,
  2. a Riemannian metric g that preserves the almost complex structure J, or
  3. a nondegenerate 2-form ω which preserves J and is positive-definite in the sense that ω(u, Ju) > 0 for all nonzero real tangent vectors u.

Note that many authors call g itself the Hermitian metric.

Properties

Every (almost) complex manifold admits a Hermitian metric. This follows directly from the analogous statement for Riemannian metric. Given an arbitrary Riemannian metric g on an almost complex manifold M one can construct a new metric g′ compatible with the almost complex structure J in an obvious manner:

Choosing a Hermitian metric on an almost complex manifold M is equivalent to a choice of U(n)-structure on M; that is, a reduction of the structure group of the frame bundle of M from GL(n, C) to the unitary group U(n). A unitary frame on an almost Hermitian manifold is complex linear frame which is orthonormal with respect to the Hermitian metric. The unitary frame bundle of M is the principal U(n)-bundle of all unitary frames.

Every almost Hermitian manifold M has a canonical volume form which is just the Riemannian volume form determined by g. This form is given in terms of the associated (1,1)-form ω by where ωn is the wedge product of ω with itself n times. The volume form is therefore a real (n,n)-form on M. In local holomorphic coordinates the volume form is given by

One can also consider a hermitian metric on a holomorphic vector bundle.

Kähler manifolds

The most important class of Hermitian manifolds are Kähler manifolds. These are Hermitian manifolds for which the Hermitian form ω is closed: In this case the form ω is called a Kähler form. A Kähler form is a symplectic form, and so Kähler manifolds are naturally symplectic manifolds.

An almost Hermitian manifold whose associated (1,1)-form is closed is naturally called an almost Kähler manifold. Any symplectic manifold admits a compatible almost complex structure making it into an almost Kähler manifold.

Integrability

A Kähler manifold is an almost Hermitian manifold satisfying an integrability condition. This can be stated in several equivalent ways.

Let (M, g, ω, J) be an almost Hermitian manifold of real dimension 2n and let be the Levi-Civita connection of g. The following are equivalent conditions for M to be Kähler:

  • ω is closed and J is integrable,
  • J = 0,
  • ∇ω = 0,
  • the holonomy group of is contained in the unitary group U(n) associated to J,

The equivalence of these conditions corresponds to the "2 out of 3" property of the unitary group.

In particular, if M is a Hermitian manifold, the condition dω = 0 is equivalent to the apparently much stronger conditions ω = ∇J = 0. The richness of Kähler theory is due in part to these properties.

References

  • Griffiths, Phillip; Joseph Harris (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. New York: Wiley-Interscience. ISBN 0-471-05059-8.
  • Kobayashi, Shoshichi; Katsumi Nomizu (1996) [1963]. Foundations of Differential Geometry, Vol. 2. Wiley Classics Library. New York: Wiley Interscience. ISBN 0-471-15732-5.
  • Kodaira, Kunihiko (1986). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. New York: Springer. ISBN 3-540-22614-1.

Read other articles:

GumengDesaKantor Desa GumengNegara IndonesiaProvinsiJawa TengahKabupatenKaranganyarKecamatanJenawiKode pos57794Kode Kemendagri33.13.17.2001 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Gumeng adalah desa di kecamatan Jenawi, Karanganyar, Jawa Tengah, Indonesia. Pembagian wilayah Desa Gumeng terdiri dari dusun/dukuh: Cetho Gumeng Kadipekso Milir Ngarjosari Pendidikan Lembaga pendidikan formal yang terletak di Desa Gumeng, antara lain: SD Negeri 01 Gumeng SD Negeri 03 Gumeng P...

 

 

Astrid Nadya RizqitaAstrid Nadya Rizqita pada 2023Lahir17 November 1996 (umur 27)Kota Bandung, Jawa Barat, IndonesiaKebangsaanIndonesiaAlmamaterSD Al Azhar Syifa Budi KemangSMPN 85 JakartaInternational Grammar School and College IslamabadSMA Negeri 97 JakartaUIN Syarif Hidayatullah JakartaPekerjaanaktivisTahun aktif2017 – SekarangOrganisasiAsian African Youth Government (AAYG)OIC Youth IndonesiaHIPMI DKI Jakarta RayaIslamic Cooperation Youth Forum (ICYF) Astrid Nadya Rizqita (lah...

 

 

French former professional footballer Yohann Eudeline Personal informationFull name Yohann EudelineDate of birth (1982-06-23) 23 June 1982 (age 41)Place of birth Caen, FranceHeight 1.82 m (6 ft 0 in)Position(s) StrikerSenior career*Years Team Apps (Gls)2001–2003 USON Mondeville 51 (7)2003–2006 Caen 74 (8)2006–2008 Guingamp 44 (0)2008–2012 Sedan 115 (20)2012–2014 Nantes 34 (4)2013 Nantes B 6 (1)2014–2015 Angers 28 (1)Total 352 (41) *Club domestic league appearan...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Palestinian-Chilean singer and songwriter ElyannaElyanna in 2022Background informationBirth nameElian MarjiehBorn (2002-01-22) January 22, 2002 (age 22)Nazareth, IsraelGenres Alternative pop Arabic Pop Arabic Traditional Music Urban Occupation(s) Singer songwriter Years active2019–presentLabelsUniversal Arabic MusicWebsiteelyanna.comMusical artist Elian Marjieh (born January 22, 2002),[1] known professionally as Elyanna, is a Palestinian-Chilean singer-songwriter. She has relea...

 

 

American drive-through coffee chain Dutch Bros Inc.Original Dutch Bros Coffee location in Grants Pass, Oregon (with updated signage)Company typePublicTraded asNYSE: BROS (Class A)IndustryDrive-thru restaurantsRestaurantsRetail coffeeRetail beveragesFoundedFebruary 12, 1992; 32 years ago (1992-02-12) in Grants Pass, Oregon[1]FoundersDane BoersmaTravis BoersmaHeadquartersGrants Pass, Oregon, U.S.Number of locations912 in 17 states (Jan. 2024)Area servedWestern Uni...

Japanese food box Mid-19th century jūbako by Shibata Zeshin, housed at the Metropolitan Museum of Art of New York Jūbako (重箱, lit. tiered boxes) are tiered boxes used to hold and present food in Japan.[1] The boxes are often used to hold osechi, foods traditional to the Japanese New Year,[2] or to hold takeaway lunches, or bento. A sagejū (提重, lit. portable jūbako) or sagejūbako (提げ重箱), is a picnic set of jūbako in a carrier with handle.[3] There ...

 

 

Weapon-based martial art from Thailand This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Krabi–krabong – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this message) Krabi KrabongKrabi-krabong practitioners with Daab swordsFocusWeaponryCountry of origin ThailandOlympi...

 

 

One of several most distal parts of a limb, such as fingers or toes For other uses, see Digit. Hand A digit is one of several most distal parts of a limb, such as fingers or toes, present in many vertebrates. Names Some languages have different names for hand and foot digits (English: respectively finger and toe, German: Finger and Zeh, French: doigt and orteil). In other languages, e.g. Arabic, Russian, Polish, Spanish, Portuguese, Italian, Czech, Tagalog, Turkish, Bulgarian, and Persian, th...

Pour les articles homonymes, voir Kraft. Kraftwerk Kraftwerk en concert au festival Rock en Seine, à Saint-Cloud, en août 2022.Informations générales Pays d'origine Allemagne Genre musical Musique électronique[1], synthpop[2],[3], avant-garde[4], krautrock[5] (débuts) Années actives Depuis 1970 Labels Kling Klang, EMI Site officiel www.kraftwerk.com Composition du groupe Membres Ralf HütterFritz HilpertHenning SchmitzFalk Grieffenhagen Anciens membres Florian Schneider-Esleben (†)K...

 

 

Oleg YefremovLahirOleg Nikolayevich Yefremov(1927-10-01)1 Oktober 1927 [1]MoskwaMeninggal24 Mei 2000(2000-05-24) (umur 72)MoskwaMakamNovodevichy Cemetery, MoskwaKebangsaanRusiaAlmamaterSekolah Teater Seni Rupa Moskwa [2]PekerjaanPemeran, pengarah teater, guruTahun aktif1949–2000Suami/istriLilia Tolmacheva dan Alla Pokrovskaya [3]AnakAnastasia Yefremova dan Mikhail Yefremov Oleg Nikolayevich Yefremov (bahasa Rusia: Оле́г Никола́евич Еф...

 

 

Pour les articles homonymes, voir Golfe du Morbihan (îles Kerguelen) et Morbihan (homonymie). Golfe du Morbihan Le cromlech d'Er Lannic, dans le golfe du Morbihan. Géographie humaine Pays côtiers France Subdivisionsterritoriales Morbihan Géographie physique Type Golfe Site Ramsar (1991, Golfe du Morbihan) Localisation Dans le nord du golfe de Gascogne, océan Atlantique Coordonnées 47° 36′ nord, 2° 48′ ouest Superficie 115 km2 Longueur 20 km Larg...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Margarita Henríquez – news · newspapers · books · scholar · JSTOR (November 2010) (Learn how and when to remove this message) Margarita Henríque...

 

 

Fictional character from Encanto Fictional character Mirabel MadrigalEncanto characterFirst appearanceEncantoNovember 3, 2021Created byJared BushByron HowardVoiced byStephanie BeatrizNoemi Josefina Flores[1] (young)In-universe informationFamily Julieta (mother) Agustín (father) Isabela (sister) Luisa (sister) Relatives Alma (grandmother) Pedro (grandfather) Félix (uncle) Pepa (aunt) Bruno (uncle) Dolores (cousin) Camilo (cousin) Antonio (cousin) NationalityColombian Mirabel Madrigal...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) أندريه غرين (بالفرنسية: André Green)‏  معلومات شخصية الميلاد 12 مارس 1927 [1]  القاهرة  الوفاة 22 يناير 2012 (84 سنة) [2][3]  الدائرة السادسة في باريس ...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Variations Andrew Lloyd Webber album – news · newspapers · books · scholar · JSTOR (May 2010) (Learn how and when to remove this message) 1978 studio album by Andrew and Julian Lloyd WebberVariationsStudio album by Andrew and Julian Lloyd WebberRe...

 

 

U.S. federal government agency FSIS redirects here. The term may also refer to Finnish Security Intelligence Service. Food Safety and Inspection ServiceLogo of the FSIS parent agency: The United States Department of AgricultureAgency overviewFormedMarch 14, 1977; 47 years ago (1977-03-14)Preceding agencyFood Safety and Quality Service (FSQS)HeadquartersJamie L. Whitten Building1400 Independence Ave SWWashington, D.C.Employees10,000Agency executivesPaul Kiecker, Acting Under ...

American regional sports network Television channel MASNTypeRegional sports networkCountryUnited StatesBroadcast areaMarylandWashington, D.C.DelawareVirginiaEastern and central North CarolinaEastern Panhandle of West VirginiaSouth Central PennsylvaniaNationwide (via satellite)HeadquartersBaltimore, MarylandProgrammingLanguage(s)EnglishPicture format1080i (HDTV)480i (SDTV)OwnershipOwnerBaltimore Orioles (77%) Washington Nationals (23%)HistoryLaunchedApril 4, 2005 (19 years ago) (...

 

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2020) (Learn how and when to remove this message) Thiên ÂnVen. Dr. Thich Thien-AnTitleThichDr.PersonalBorn(1925-09-22)September 22, 1925Phú Vang District, Thừa Thiên-Huế Province, VietnamDiedNovember 23, 1980(1980-11-23) (aged 55)Los Angeles, California, U.S.ReligionBuddhismSchoolVietnamese ...