Rizza manifold

In differential geometry a Rizza manifold, named after Giovanni Battista Rizza,[1] is an almost complex manifold also supporting a Finsler structure: this kind of manifold is also referred as almost Hermitian Finsler manifold.[2]

History

The history of Rizza manifolds follows the history of the structure that such objects carry. According to Shoshichi Kobayashi (1975), the geometry of complex Finsler structures was first studied in Rizza's 1964 paper "F-forme quadratiche ed hermitiane", but Rizza announced his results nearly two years before, in the short communications (Rizza 1962a) and (Rizza 1962b), proving them in the article (Rizza 1963), nearly one year earlier than the one cited by Kobayashi. Rizza called this differential geometric structure, defined on even-dimensional manifolds, "Struttura di Finsler quasi Hermitiana":[3] his motivation for the introduction of the concept seems to be the aim of comparing two different structures existing on the same manifold.[4] Later Ichijyō (1988, p. 1) started calling this structure "Rizza structure", and manifolds carrying it "Rizza manifolds".[1]

Formal definition

The content of this paragraph closely follows references (Rizza 1963) and (Ichijyō 1988), borrowing the scheme of notation equally from both sources. Precisely, given a differentiable manifold M and one of its points xM

Definition 1. Let M be a 2n-dimensional Finsler manifold, n ≥ 1, and let F : TM its Finsler function. If the condition

(1)     

holds true, then M is a Rizza Manifold.

See also

Notes

  1. ^ a b The dedication of the work (Ichijyō 1988, p. 1) reads:-"Dedicated to professor G. B. Rizza, who is the originator of the notion of Rizza manifolds."
  2. ^ See (Ichijyō 1988, p. 6).
  3. ^ "Almost Hermitian Finsler structure": see (Rizza 1962b, pp. 271, 273–274) and (Rizza 1963, pp. 83, 90–91).
  4. ^ Rizza (1962b, p. 1) himself states:-"L'esistenza di strutture di tipo diverso su una medesima varietà dà sempre luogo a problemi di confronto (The existence of structures of different kind on the same manifold always gives rise to comparison problems)".

References

  • Aikou, Tadashi (2004), "Finsler Geometry on Complex Vector Bundles" (PDF), in Bao, David; Bryant, Robert L.; Chern, Shiing-Shen; et al. (eds.), A Sampler of Riemann–Finsler Geometry, Mathematical Sciences Research Institute Publications, vol. 50, Cambridge: Cambridge University Press, pp. 83–105, Bibcode:2004srfg.book.....B, ISBN 0-521-83181-4, MR 2132658, Zbl 1073.53093.
  • Ichijyō, Yoshihiro (1988), "Finsler metrics on almost complex manifolds", Rivista di Matematica della Università di Parma, (IV), 14*: 1–28, MR 1045035, Zbl 0885.53031.
  • Kobayashi, Shoshichi (1975), "Negative vector bundles and complex Finsler structures", Nagoya Mathematical Journal, 57: 153–166, doi:10.1017/S0027763000016615, MR 0377126, Zbl 0326.32016. In this paper, Shoshichi Kobayashi acknowledges Giovanni Battista Rizza as the first one to study complex manifolds with Finsler structure, now called Rizza manifolds.
  • Martinelli, E. (1994), "Omaggio a Giovanni Battista Rizza in occasione del suo 70° compleanno", in Donnini, S.; Gigante, G.; Mangione, V. (eds.), Geometria differenziale – Analisi complessa. Convegno internazionale – Parma, 19–20 maggio 1994 in occasione del 70° compleanno di G. B. Rizza, Serie 5 (in Italian), vol. 3, Rivista di Matematica della Università di Parma, pp. 1–2. A tribute to Rizza by his former master Enzo Martinelli: an English translation of the title reads as:-"Homage to Giovanni Battista Rizza on his 70th birthday".
  • Rizza, Giovanni Battista (1962a), "Finsler structures on almost complex manifolds", Proceedings of the International Congress of Mathematicians, Stockholm., ICM Proceedings, Stockholm{{citation}}: CS1 maint: location missing publisher (link). A short research announcement describing briefly the results proved in (Rizza 1963).
  • Rizza, Giovanni Battista (1962b), "Strutture di Finsler sulle varietà quasi complesse", Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII (in Italian), 33 (5): 271–275. Another short presentation of the results proved in (Rizza 1963): the English translation of the title reads as:-"Finsler structures on almost complex manifolds".
  • Rizza, Giovanni Battista (1963), "Strutture di Finsler di tipo quasi Hermitiano", Rivista di Matematica della Università di Parma, (2) (in Italian), 4: 83–106, MR 0166742, Zbl 0129.14101. The article giving the proofs of the results previously announced in references (Rizza 1962a) and Rizza (1962b): the English translation of the title reads as:-"Finsler structures of almost Hermitian type".
  • Rizza, Giovanni Battista (1964), "F-forme quadratiche ed hermitiane", Rendiconti di Matematica, V Serie (in Italian), 23 (1–2): 221–249, MR 0211370, Zbl 0123.15203. This article is the one Shoshichi Kobayashi cites as the first one in the theory of Rizza manifolds: an English translation of the title reads as:-"Hermitian and quadratic F-forms".

Read other articles:

StaurikosaurusRentang fosil: Trias Awal, 233 mya Kerangka rekonstruksi Klasifikasi ilmiah Kerajaan: Animalia Kelas: Sauropsida Superordo: Dinosauria Ordo: Saurischia Subordo: Theropoda Famili: Herrerasauridae Genus: †Staurikosaurus Staurikosaurus adalah genus dari dinosaurus theropoda bertubuh kecil dan ringan yang hidup di wilayah yang sekarang merupakan Brazil[1] pada periode Trias Akhir.[2] Kelangkaan dari fosil Staurikosaurus dapat disebabkan oleh baik kelangkaannya saa...

 

Radian per detikFrekuensi sudut ω (dalam radian per detik), lebih besar dari frekuensi ν (dalam putaran per detik, juga disebut Hz), dengan faktor 2π, karena 2π rad/s sama dengan 1 Hz.Informasi umumSistem satuanSatuan turunan SIBesarankecepatan sudutSimbolrad⋅s−1 Radian per detik (simbol: rad·s−1 atau rad/s) adalah satuan SI untuk kecepatan sudut. Ia juga menjadi satuan untuk frekuensi sudut. Radian per detik didefinisikan sebagai perubahan orientasi suatu benda, di dalam radian, t...

 

Sinagoge di kota Bydgoszcz yang diduduki Jerman. Di situ tertulis kota ini bebas Yahudi. Judenfrei (secara harfiah berarti bebas Yahudi) dan judenrein (bersih dari Yahudi) adalah istilah yang digunakan oleh Jerman Nazi untuk wilayah yang telah dibersihkan dari orang Yahudi selama peristiwa Holocaust.[1] Istilah judenfrei hanya mengacu kepada pembersihan orang Yahudi dari suatu wilayah, sementara judenrein memiliki konotasi bahwa darah Yahudi telah dibersihkan karena dianggap kotor ata...

Windows 7Tampilan layar dari Windows 7PembangunMicrosoftKeluarga OSMicrosoft WindowsModel sumberKode sumber tertutupDirilis kemanufakturRTM: 22 Juli 2009[1]Retail: 22 Oktober 2009[1]Rilis terbaru6.1[2] (Build 7601: Service Pack 1)[3] / 22 Oktober 2009; 14 tahun lalu (2009-10-22)[1]Metode updateWindows UpdatePlatformIA-32, x86-64Tipe KernelHybridLisensiMS-EULADidahului olehWindows VistaDigantikan olehWindows 8Situs resmiWindows 7Status dukunganDukun...

 

55°30′N 24°00′E / 55.500°N 24.000°E / 55.500; 24.000 Lithuania SSR جمهورية ليتوانيا الاشتراكية السوفيتية Lithuania Soviet Socialist Republic 1940 – 1991 جمهورية ليتوانيا الاشتراكية السوفيتيةعلم جمهورية ليتوانيا الاشتراكية السوفيتيةشعار يا عمال العالم اتحدوا  النشيد : عاصمة فيلنيوس نظام الح�...

 

Michele di GreciaMichele di Grecia nel 2008Principe di Grecia e DanimarcaStemma NascitaRoma, 7 gennaio 1939 (85 anni) DinastiaSchleswig-Holstein-Sonderburg-Glücksburg PadreCristoforo di Grecia MadreFrancesca d'Orléans ConsorteMarína Karélla FigliAlessandraOlga ReligioneGreco-ortodossa Michele, principe di Grecia e Danimarca (nato Μιχαήλ της Ελλάδας (Michaḯl tis Elládas, Michaḯl di Grecia); Roma, 7 gennaio 1939), è un nobile e scrittore greco. Tramite il pa...

Chronologies Lourdes, août 1964.Données clés 1961 1962 1963  1964  1965 1966 1967Décennies :1930 1940 1950  1960  1970 1980 1990Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivo...

 

Tumpang sari lobak dan seledri di Pangalengan, Bandung Kelapa dan bunga Tagetes erecta di India Pertanaman campuran atau polikultur adalah usaha pertanian yang membudidayakan berbagai jenis tanaman pertanian pada lahan yang sama. Sistem ini meniru keanekaragaman ekosistem alami dan menghindari pertanaman tunggal atau monokultur. Tumpang sari dan wanatani termasuk ke dalam praktik pertanaman campuran. Polikultur merupakan salah satu prinsip permakultur. Polikultur membutuhkan lebih banyak tena...

 

Amtrak rail station Miami, FLMiami station in October 2017General informationLocation8303 NW 37th AvenueMiami, FloridaUnited StatesCoordinates25°50′59″N 80°15′29″W / 25.84972°N 80.25806°W / 25.84972; -80.25806Owned byAmtrakPlatforms2 island platformsTracks3Connections Metrobus: 42, 112ConstructionParkingYesAccessibleYesOther informationStation codeAmtrak: MIAHistoryOpenedJune 20, 1978PassengersFY 202250,992[1] (Amtrak) Services Preceding st...

American politician (1824–1911) For others with a similar name, see Thomas Henderson. Thomas J. HendersonChairman of the House Republican ConferenceIn officeMarch 4, 1889 – March 3, 1895SpeakerThomas B. Reed (1889–1891)Charles F. Crisp (1891–1895)Preceded byJoseph G. CannonSucceeded byCharles H. GrosvenorMember of the U.S. House of Representativesfrom IllinoisIn officeMarch 4, 1883 – March 3, 1895Preceded byWilliam CullenSucceeded byGeorge Edmund FossConstituency7t...

 

Ferid MuradMurad pada kuliah tahun 2008Lahir(1936-09-14)14 September 1936Whiting, Indiana, A.S.Meninggal4 September 2023(2023-09-04) (umur 86)Menlo Park, California, A.S.AlmamaterUniversitas DePauw (BS, 1958) dan Universitas Case Western Reserve (MD-PhD, 1965)Dikenal atasPenemuan mengenai GMP siklik sebagai molekul pemberi sinyal di sistem kardiovaskularSuami/istriCarol A. LeopoldAnak5PenghargaanPenghargaan Nobel bidang Fisiologi atau Kedokteran (1998) dan Penghargaan Albert Lasker untu...

 

Vikariat Apostolik MekiVicariatus Apostolicus MekviensisLokasiNegaraEthiopiaMetropolitSubyek langsung Tahta SuciStatistikLuas156.600 km2 (60.500 sq mi)Populasi- Total- Katolik(per 2004)5.855.02922,467 (0.4%)InformasiRitusRitus LatinKatedralKatedral MekiKepemimpinan kiniUskupAbraham DestaPeta Vikariat Apostolik Meki (bahasa Latin: Vicariatus Apostolicus Mekviensis) adalah sebuah vikariat apostolik Katolik Latin yang terletak di Meki, Ethiopia. Riwayat 6 M...

French politician Christophe de Chabrol de CrouzolBorn(1771-11-16)16 November 1771Riom, Puy-de-Dôme, FranceDied7 October 1836(1836-10-07) (aged 64)Château de Chabannes, Paslières, Puy-de-Dôme, FranceNationalityFrenchOccupationPoliticianKnown forMinister of the Navy Christophe André Jean de Chabrol de Crouzol (16 November 1771 – 7 October 1836) was a French politician who served in the administration of Napoleon, then adhered to the Bourbon Restoration in 1814. As Prefect ...

 

Letak Pulau Eysturoy di Kepulauan Faroe Eysturoy merupakan sebuah pulau di Kepulauan Faroe. Pulau ini terletak di bagian Samudera Atlantik. Pulau ini memiliki jumlah penduduk sebanyak 10.810 jiwa dan memiliki luas wilayah 286,3 km². Pulau ini memiliki angka kepadatan penduduk sebesar 38 jiwa/km². Pranala luar Personal website Diarsipkan 2017-01-29 di Wayback Machine. with 15 aerial photos of Eysturoy lbs Region di DenmarkDenmark Region Ibukota Region Hovedstaden Region Midtjylland Regi...

 

State park in New York, United States Niagara Falls State ParkNiagara Falls State Park's overlook of the American Falls, with the Horseshoe Falls in the distanceShow map of New YorkShow map of the United StatesTypeState parkLocationProspect Street & Old Falls StreetNiagara Falls, New York, United States[1]Coordinates43°05′N 79°04′W / 43.08°N 79.07°W / 43.08; -79.07Area221 acres (0.89 km2)[2]Created1885 (139 years ago) (188...

Komite Penanganan Corona Virus Disease 2019 dan Pemulihan Ekonomi NasionalInformasi lembagaDibentuk20 Juli 2020 (2020-07-20)Nomenklatur lembaga sebelumnyaGugus Tugas Percepatan Penanganan COVID-19beserta 18 lembaga lainnya yang dibubarkan[1]Dibubarkan05 Agustus 2023 (2023-08-05)Wilayah hukumPemerintah IndonesiaKantor pusatKantor Sekretariat Presiden, Istana Negara, Jakarta, Indonesia6°10′06″S 106°49′28″E / 6.1683°S 106.8244°E / -6.1683; 10...

 

Henri van Cuykvescovo della Chiesa cattolica Da gloriam Deo  Incarichi ricopertiVescovo di Roermond (1595-1609)  Nato1546 ad Culemborg Consacrato vescovo8 luglio 1596 dall'arcivescovo Mathias Hovius Deceduto9 ottobre 1609 a Roermond   Manuale Henri van Cuyk conosciuto anche come Hendrik van Cuyk o con il nome latinizzato Henricus Cuyckius (Culemborg, 1546 – Roermond, 9 ottobre 1609) è stato un vescovo cattolico e umanista olandese. Indice 1 Biografia 2 Opere 3 Opere (selezio...

 

Not to be confused with Veiled Prophet Parade and Ball. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may contain an excessive amount of intricate detail that may interest only a particular audience. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia's inclusion policy. (December 2023) (Learn how a...

Financial trust to benefit disabled individuals Wills, trustsand estates Part of the common law series Wills Legal history of wills Joint wills and mutual wills Will contract Codicil Holographic will Oral will Sections Attestation clause Residuary clause Incorporation by reference Contest Testamentary capacity Undue influence Insane delusion Fraud No-contest clause Property disposition Lapse and anti-lapse Ademption Abatement Satisfaction of legacies Acts of independent significance Elective ...

 

Линга́м, также часто — Ли́нга, (санскр. लिङ्गं IAST: liṅgaṃ — знак, метка, признак[1]) — в древнеиндийской мифологии и некоторых течениях индуизма символ божественной производящей силы[2]. Наибольшее распространение получил в шиваизме, как поклонение Линг...