List of topologies
List of concrete topologies and topological spaces
The following is a list of named topologies or topological spaces , many of which are counterexamples in topology and related branches of mathematics . This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property .
Discrete and indiscrete
Cardinality and ordinals
Finite spaces
Discrete two-point space − The simplest example of a totally disconnected discrete space .
Finite topological space
Pseudocircle − A finite topological space on 4 elements that fails to satisfy any separation axiom besides T0 . However, from the viewpoint of algebraic topology , it has the remarkable property that it is indistinguishable from the circle
S
1
.
{\displaystyle S^{1}.}
Sierpiński space , also called the connected two-point set − A 2-point set
{
0
,
1
}
{\displaystyle \{0,1\}}
with the particular point topology
{
∅ ∅ -->
,
{
1
}
,
{
0
,
1
}
}
.
{\displaystyle \{\varnothing ,\{1\},\{0,1\}\}.}
Integers
Arens–Fort space − A Hausdorff, regular, normal space that is not first-countable or compact. It has an element (i.e.
p
:=
(
0
,
0
)
{\displaystyle p:=(0,0)}
) for which there is no sequence in
X
∖ ∖ -->
{
p
}
{\displaystyle X\setminus \{p\}}
that converges to
p
{\displaystyle p}
but there is a sequence
x
∙ ∙ -->
=
(
x
i
)
i
=
1
∞ ∞ -->
{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i=1}^{\infty }}
in
X
∖ ∖ -->
{
(
0
,
0
)
}
{\displaystyle X\setminus \{(0,0)\}}
such that
(
0
,
0
)
{\displaystyle (0,0)}
is a cluster point of
x
∙ ∙ -->
.
{\displaystyle x_{\bullet }.}
Arithmetic progression topologies
The Baire space −
N
N
{\displaystyle \mathbb {N} ^{\mathbb {N} }}
with the product topology, where
N
{\displaystyle \mathbb {N} }
denotes the natural numbers endowed with the discrete topology. It is the space of all sequences of natural numbers.
Divisor topology
Partition topology
Fractals and Cantor set
Orders
Manifolds and complexes
Hyperbolic geometry
Paradoxical spaces
Lakes of Wada − Three disjoint connected open sets of
R
2
{\displaystyle \mathbb {R} ^{2}}
or
(
0
,
1
)
2
{\displaystyle (0,1)^{2}}
that all have the same boundary.
Unique
Embeddings and maps between spaces
Counter-examples (general topology)
The following topologies are a known source of counterexamples for point-set topology .
Alexandroff plank
Appert topology − A Hausdorff, perfectly normal (T6 ), zero-dimensional space that is countable, but neither first countable , locally compact , nor countably compact .
Arens square
Bullet-riddled square - The space
[
0
,
1
]
2
∖ ∖ -->
Q
2
,
{\displaystyle [0,1]^{2}\setminus \mathbb {Q} ^{2},}
where
[
0
,
1
]
2
∩ ∩ -->
Q
2
{\displaystyle [0,1]^{2}\cap \mathbb {Q} ^{2}}
is the set of bullets. Neither of these sets is Jordan measurable although both are Lebesgue measurable .
Cantor tree
Comb space
Dieudonné plank
Double origin topology
Dunce hat (topology)
Either–or topology
Excluded point topology − A topological space where the open sets are defined in terms of the exclusion of a particular point.
Fort space
Half-disk topology
Hilbert cube −
[
0
,
1
/
1
]
× × -->
[
0
,
1
/
2
]
× × -->
[
0
,
1
/
3
]
× × -->
⋯ ⋯ -->
{\displaystyle [0,1/1]\times [0,1/2]\times [0,1/3]\times \cdots }
with the product topology .
Infinite broom
Integer broom topology
K-topology
Knaster–Kuratowski fan
Long line (topology)
Moore plane , also called the Niemytzki plane − A first countable , separable , completely regular , Hausdorff, Moore space that is not normal , Lindelöf , metrizable , second countable , nor locally compact . It also an uncountable closed subspace with the discrete topology.
Nested interval topology
Overlapping interval topology − Second countable space that is T0 but not T1 .
Particular point topology − Assuming the set is infinite, then contains a non-closed compact subset whose closure is not compact and moreover, it is neither metacompact nor paracompact .
Rational sequence topology
Sorgenfrey line , which is
R
{\displaystyle \mathbb {R} }
endowed with lower limit topology − It is Hausdorff, perfectly normal, first-countable, separable, paracompact, Lindelöf, Baire , and a Moore space but not metrizable, second-countable, σ-compact, nor locally compact.
Sorgenfrey plane , which is the product of two copies of the Sorgenfrey line − A Moore space that is neither normal , paracompact , nor second countable .
Topologist's sine curve
Tychonoff plank
Vague topology
Warsaw circle
Topologies defined in terms of other topologies
Natural topologies
List of natural topologies .
Compactifications
Compactifications include:
This lists named topologies of uniform convergence .
Other induced topologies
Box topology
Compact complement topology
Duplication of a point : Let
x
∈ ∈ -->
X
{\displaystyle x\in X}
be a non-isolated point of
X
,
{\displaystyle X,}
let
d
∉
X
{\displaystyle d\not \in X}
be arbitrary, and let
Y
=
X
∪ ∪ -->
{
d
}
.
{\displaystyle Y=X\cup \{d\}.}
Then
τ τ -->
=
{
V
⊆ ⊆ -->
Y
:
either
V
or
(
V
∖ ∖ -->
{
d
}
)
∪ ∪ -->
{
x
}
is an open subset of
X
}
{\displaystyle \tau =\{V\subseteq Y:{\text{ either }}V{\text{ or }}(V\setminus \{d\})\cup \{x\}{\text{ is an open subset of }}X\}}
is a topology on
Y
{\displaystyle Y}
and
x
{\displaystyle x}
and
d
{\displaystyle d}
have the same neighborhood filters in
Y
.
{\displaystyle Y.}
In this way,
x
{\displaystyle x}
has been duplicated.
Extension topology
Functional analysis
Operator topologies
Tensor products
Probability
Other topologies
See also
Citations
References
Adams, Colin ; Franzosa, Robert (2009). Introduction to Topology: Pure and Applied . New Delhi: Pearson Education. ISBN 978-81-317-2692-1 . OCLC 789880519 .
Arkhangel'skii, Alexander Vladimirovich ; Ponomarev, V.I. (1984). Fundamentals of General Topology: Problems and Exercises . Mathematics and Its Applications. Vol. 13. Dordrecht Boston: D. Reidel . ISBN 978-90-277-1355-1 . OCLC 9944489 .
Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale ]. Éléments de mathématique . Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1 . OCLC 18588129 .
Bourbaki, Nicolas (1989) [1967]. General Topology 2: Chapters 5–10 [Topologie Générale ]. Éléments de mathématique . Vol. 4. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64563-4 . OCLC 246032063 .
Comfort, William Wistar; Negrepontis, Stylianos (1974). The Theory of Ultrafilters . Vol. 211. Berlin Heidelberg New York: Springer-Verlag . ISBN 978-0-387-06604-2 . OCLC 1205452 .
Dixmier, Jacques (1984). General Topology . Undergraduate Texts in Mathematics. Translated by Berberian, S. K. New York: Springer-Verlag . ISBN 978-0-387-90972-1 . OCLC 10277303 .
Császár, Ákos (1978). General topology . Translated by Császár, Klára. Bristol England: Adam Hilger Ltd. ISBN 0-85274-275-4 . OCLC 4146011 .
Dolecki, Szymon ; Mynard, Frédéric (2016). Convergence Foundations Of Topology . New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4 . OCLC 945169917 .
Dugundji, James (1966). Topology . Boston: Allyn and Bacon. ISBN 978-0-697-06889-7 . OCLC 395340485 .
Howes, Norman R. (23 June 1995). Modern Analysis and Topology . Graduate Texts in Mathematics . New York: Springer-Verlag Science & Business Media. ISBN 978-0-387-97986-1 . OCLC 31969970 . OL 1272666M .
Jarchow, Hans (1981). Locally convex spaces . Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4 . OCLC 8210342 .
Joshi, K. D. (1983). Introduction to General Topology . New York: John Wiley and Sons Ltd. ISBN 978-0-85226-444-7 . OCLC 9218750 .
Kelley, John L. (1975) [1955]. General Topology . Graduate Texts in Mathematics . Vol. 27 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-90125-1 . OCLC 1365153 .
Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I . Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2 . MR 0248498 . OCLC 840293704 .
Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ : Prentice Hall, Inc . ISBN 978-0-13-181629-9 . OCLC 42683260 .
Schechter, Eric (1996). Handbook of Analysis and Its Foundations . San Diego, CA: Academic Press. ISBN 978-0-12-622760-4 . OCLC 175294365 .
Schubert, Horst (1968). Topology . London: Macdonald & Co. ISBN 978-0-356-02077-8 . OCLC 463753 .
Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces . Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4 . OCLC 849801114 .
Wilansky, Albert (17 October 2008) [1970]. Topology for Analysis . Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-46903-4 . OCLC 227923899 .
Willard, Stephen (2004) [1970]. General Topology . Mineola, N.Y. : Dover Publications . ISBN 978-0-486-43479-7 . OCLC 115240 .
External links