Sierpiński carpet

6 steps of a Sierpiński carpet.

The Sierpiński carpet is a plane fractal first described by Wacław Sierpiński in 1916. The carpet is a generalization of the Cantor set to two dimensions; another such generalization is the Cantor dust.

The technique of subdividing a shape into smaller copies of itself, removing one or more copies, and continuing recursively can be extended to other shapes. For instance, subdividing an equilateral triangle into four equilateral triangles, removing the middle triangle, and recursing leads to the Sierpiński triangle. In three dimensions, a similar construction based on cubes is known as the Menger sponge.

Construction

The construction of the Sierpiński carpet begins with a square. The square is cut into 9 congruent subsquares in a 3-by-3 grid, and the central subsquare is removed. The same procedure is then applied recursively to the remaining 8 subsquares, ad infinitum. It can be realised as the set of points in the unit square whose coordinates written in base three do not both have a digit '1' in the same position, using the infinitesimal number representation of .[1]

The process of recursively removing squares is an example of a finite subdivision rule.

Properties

Variant of the Peano curve with the middle line erased creates a Sierpiński carpet

The area of the carpet is zero (in standard Lebesgue measure).

Proof: Denote as ai the area of iteration i. Then ai + 1 = 8/9ai. So ai = (8/9)i, which tends to 0 as i goes to infinity.

The interior of the carpet is empty.

Proof: Suppose by contradiction that there is a point P in the interior of the carpet. Then there is a square centered at P which is entirely contained in the carpet. This square contains a smaller square whose coordinates are multiples of 1/3k for some k. But, if this square has not been previously removed, it must have been holed in iteration k + 1, so it cannot be contained in the carpet – a contradiction.

The Hausdorff dimension of the carpet is .[2]

Sierpiński demonstrated that his carpet is a universal plane curve.[3] That is: the Sierpiński carpet is a compact subset of the plane with Lebesgue covering dimension 1, and every subset of the plane with these properties is homeomorphic to some subset of the Sierpiński carpet.

This "universality" of the Sierpiński carpet is not a true universal property in the sense of category theory: it does not uniquely characterize this space up to homeomorphism. For example, the disjoint union of a Sierpiński carpet and a circle is also a universal plane curve. However, in 1958 Gordon Whyburn[4] uniquely characterized the Sierpiński carpet as follows: any curve that is locally connected and has no 'local cut-points' is homeomorphic to the Sierpiński carpet. Here a local cut-point is a point p for which some connected neighborhood U of p has the property that U − {p} is not connected. So, for example, any point of the circle is a local cut point.

In the same paper Whyburn gave another characterization of the Sierpiński carpet. Recall that a continuum is a nonempty connected compact metric space. Suppose X is a continuum embedded in the plane. Suppose its complement in the plane has countably many connected components C1, C2, C3, ... and suppose:

  • the diameter of Ci goes to zero as i → ∞;
  • the boundary of Ci and the boundary of Cj are disjoint if ij;
  • the boundary of Ci is a simple closed curve for each i;
  • the union of the boundaries of the sets Ci is dense in X.

Then X is homeomorphic to the Sierpiński carpet.

Brownian motion on the Sierpiński carpet

The topic of Brownian motion on the Sierpiński carpet has attracted interest in recent years.[5] Martin Barlow and Richard Bass have shown that a random walk on the Sierpiński carpet diffuses at a slower rate than an unrestricted random walk in the plane. The latter reaches a mean distance proportional to n after n steps, but the random walk on the discrete Sierpiński carpet reaches only a mean distance proportional to βn for some β > 2. They also showed that this random walk satisfies stronger large deviation inequalities (so called "sub-Gaussian inequalities") and that it satisfies the elliptic Harnack inequality without satisfying the parabolic one. The existence of such an example was an open problem for many years.

Wallis sieve

Third iteration of the Wallis sieve

A variation of the Sierpiński carpet, called the Wallis sieve, starts in the same way, by subdividing the unit square into nine smaller squares and removing the middle of them. At the next level of subdivision, it subdivides each of the squares into 25 smaller squares and removes the middle one, and it continues at the ith step by subdividing each square into (2i + 1)2 (the odd squares[6]) smaller squares and removing the middle one. By the Wallis product, the area of the resulting set is π/4, unlike the standard Sierpiński carpet which has zero limiting area. Although the Wallis sieve has positive Lebesgue measure, no subset that is a Cartesian product of two sets of real numbers has this property, so its Jordan measure is zero.[7]

Applications

Mobile phone and Wi-Fi fractal antennas have been produced in the form of few iterations of the Sierpiński carpet. Due to their self-similarity and scale invariance, they easily accommodate multiple frequencies. They are also easy to fabricate and smaller than conventional antennas of similar performance, thus being optimal for pocket-sized mobile phones.[8][9][10]

See also

References

  1. ^ Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. pp. 405–406. ISBN 978-0-521-82332-6. Zbl 1086.11015.
  2. ^ Semmes, Stephen (2001). Some Novel Types of Fractal Geometry. Oxford Mathematical Monographs. Oxford University Press. p. 31. ISBN 0-19-850806-9. Zbl 0970.28001.
  3. ^ Sierpiński, Wacław (1916). "Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée". C. R. Acad. Sci. Paris (in French). 162: 629–632. ISSN 0001-4036. JFM 46.0295.02.
  4. ^ Whyburn, Gordon (1958). "Topological chcracterization of the Sierpinski curve". Fund. Math. 45: 320–324. doi:10.4064/fm-45-1-320-324.
  5. ^ Barlow, Martin; Bass, Richard, Brownian motion and harmonic analysis on Sierpiński carpets (PDF)
  6. ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Rummler, Hansklaus (1993). "Squaring the circle with holes". The American Mathematical Monthly. 100 (9): 858–860. doi:10.2307/2324662. JSTOR 2324662. MR 1247533.
  8. ^ N. A. Saidatul, A. A. H. Azremi, R. B. Ahmad, P. J. Soh and F. Malek, "A development of Fractal PIFA (planar inverted F antenna) with bandwidth enhancement for mobile phone applications," 2009 Loughborough Antennas & Propagation Conference, Loughborough, UK, 2009, pp. 113-116, doi: 10.1109/LAPC.2009.5352584.
  9. ^ T. Kalaimani, P. M. Venkatesh, R. Mohanamurali and T. Shanmuganantham, "A modified Sierpinski carpet fractal antenna for wireless applications," 2013 International Conference on Communication and Signal Processing, Melmaruvathur, India, 2013, pp. 722-725, doi: 10.1109/iccsp.2013.6577150.
  10. ^ W. -L. Chen, G. -M. Wang and C. -X. Zhang, "Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes," in IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 738-741, 2008, doi: 10.1109/LAWP.2008.2002808.

Read other articles:

Dalam Gereja Katolik Roma, Persembahan pagi atau Doa Pagi adalah doa yang diucapkan oleh seseorang di awal hari untuk menguduskan diri kepada Yesus Kristus. Praktik ini secara tradisional diasosiasikan dengan Kerasulan Doa. Sementara sejak tahun 1929 Paus telah menambahkan niat umum dan misi pada doa persembahan pagi tradisional setiap bulan,[1] Paus Fransiskus telah mengembalikan ini ke niat awal bulanan.[2] Seiring waktu bentuk lain dari doa persembahan pagi telah disarankan...

 

Gempa bumi Nepal 20232023 नेपालमा भूकम्पPeta intensitas gempa bumi ini menurut USGSWaktu UTC2023-11-03 18:02:54ISC635879604USGS-ANSSComCatTanggal setempat3 November 2023 (2023-11-03)Waktu setempat23:47 NST (UTC+5:45)Kekuatan5.7 MwKedalaman32,6 km (20,3 mi)Episentrum28°53′17″N 82°11′42″E / 28.888°N 82.195°E / 28.888; 82.195Koordinat: 28°53′17″N 82°11′42″E / 28.888°N 82.195°E...

 

MarIgnatius Ephrem II RahmaniPatriark Antiokhia GerejaGereja Katolik SiriaTakhtaPatriark AntiokhiaAwal masa jabatan9 Oktober 1898Masa jabatan berakhir7 Mei 1929PendahuluIgnatius Behnam II BenniPenerusIgnatius Gabriel I TappuniImamatTahbisan imamApril 1873 (Imam)Tahbisan uskup2 Oktober 1887 (Uskup)oleh George V ShelhotInformasi pribadiNama lahirEphrem RahmaniLahir21 November 1848Mosul, IrakWafat7 Mei 1929(1929-05-07) (umur 80)Cairo, MesirKediamanBeirut Mar Ignatius Dionysius Ephrem I...

2022 video game 2022 video gameWarhammer 40,000: DarktideDeveloper(s)FatsharkPublisher(s)FatsharkDirector(s)Anders De GeerWriter(s)Dan AbnettMatt WardComposer(s)Jesper KydSeriesWarhammer 40,000EngineAutodesk StingrayPlatform(s)Microsoft WindowsXbox Series X/SReleaseMicrosoft Windows30 November 2022Xbox Series X/S4 October 2023Genre(s)Action, first-person shooterMode(s)Multiplayer Warhammer 40,000: Darktide is a first-person action video game set in the Warhammer 40,000 universe, developed and...

 

Dalam nama yang mengikuti kebiasaan penamaan Slavia Timur ini, patronimiknya adalah Abgarovich dan nama keluarganya adalah Khachanov. Karen KhachanovКарен ХачановKhachanov di Monte-Carlo Masters 2022Kebangsaan RusiaTempat tinggalDubai, Uni Emirat ArabLahir21 Mei 1996 (umur 27)Moskwa, RusiaTinggi198 m (649 ft 7 in)Memulai pro2013PelatihVedran MartićJosé ClavetTotal hadiahUS$12,146,853TunggalRekor (M–K)219–165 (57.03% pada pertandingan undian ...

 

Artikel ini adalah bagian dari seri:Permainan video Pelantar Dingdong Konsol permainan Konsol video rumah Permainan elektronik Konsol genggam Permainan ponsel Permainan daring Permainan PC Linux Mac Genre Laga Berhantam Bertarung Arung pelantar Bertahan hidup Siluman Bertahan hidup horor Petualangan Bermain peran Bermain peran laga Bermain peran taktik Simulasi Konstruksi dan manajemen Simulasi kehidupan Olahraga Kendaraan Strategi Bertarung daring banyak pemain Strategi waktu nyata Taktik wa...

Spacecraft engine that generates thrust by generating a jet of ions This article is about a kind of reaction engine. For the air propulsion concept, see ionocraft. The 2.3 kW NSTAR ion thruster developed by NASA for the Deep Space 1 spacecraft during a hot fire test at the Jet Propulsion Laboratory (1999) NEXIS ion engine test (2005)A prototype of a xenon ion engine being tested at NASA's Jet Propulsion Laboratory (2005) An ion thruster, ion drive, or ion engine is a form of electric pro...

 

Questa voce sull'argomento cestisti serbi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Maja Škorić Nazionalità  Serbia Altezza 185 cm Pallacanestro Ruolo Ala piccola Squadra  Brixia CarrieraSquadre di club 2008-2009Celarevo2009-2011 Hemofarm Vršac2011-2013 Szekszárd2014-2017 Ceglédi2017-2018 Basket Landes2018-2020 DVTK Miskolc2020-2021 Szekszárd2021-202...

 

豪栄道 豪太郎 場所入りする豪栄道基礎情報四股名 澤井 豪太郎→豪栄道 豪太郎本名 澤井 豪太郎愛称 ゴウタロウ、豪ちゃん、GAD[1][2]生年月日 (1986-04-06) 1986年4月6日(38歳)出身 大阪府寝屋川市身長 183cm体重 160kgBMI 47.26所属部屋 境川部屋得意技 右四つ・出し投げ・切り返し・外掛け・首投げ・右下手投げ成績現在の番付 引退最高位 東大関生涯戦歴 696勝493敗...

Indian actor Jinu JosephBorn21 December 1975 (1975-12-21) (age 48)OccupationactorYears active2007–presentSpouseLeah Samuel (2012–present)ChildrenMark Antony Joseph (b. 2020) Jinu Joseph (born 21 December 1975) is an Indian actor who appears in Malayalam films. He is better known for his roles in Sagar Alias Jacky Reloaded, Chaappa Kurishu, Bachelor Party, Ustad Hotel, Iyobinte Pusthakam, Rani Padmini, Varathan Bheemante Vazhi and Anjaam Pathiraa.[1][2] Perso...

 

Right to enjoy one's sexuality without discrimination This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. The reason given is: Most sources are from 2008–2012. Please help update this article to reflect recent events or newly available information. (January 2024) This article is written like a personal reflection, personal essay, or argumentative essay that...

 

19th Council of Ministers of Bangladesh Third Hasina Ministry19th Council of Ministers of Bangladesh14 January 2014 – 7 January 2019HasinaDate formed14 January 2014 (2014-01-14)Date dissolved7 January 2019 (2019-01-07)People and organisationsHead of stateMohammad Abdul HamidHead of governmentSheikh HasinaNo. of ministers31 Cabinet Ministers17 State Ministers 2 Deputy Ministers.Total no. of members50Member partyAwami LeagueStatus in legislature98-seat single-par...

梅拉蒂·达伊瓦·奥克塔维亚尼Melati Daeva Oktavianti基本資料代表國家/地區 印度尼西亞出生 (1994-10-28) 1994年10月28日(29歲)[1] 印度尼西亞万丹省西冷[1]身高1.68米(5英尺6英寸)[1]握拍右手[1]主項:女子雙打、混合雙打職業戰績48勝–27負(女雙)109勝–56負(混雙)最高世界排名第4位(混雙-普拉文·喬丹)(2020年3月17日[2])現時世界排名第...

 

County in Idaho, United States County in IdahoFremont CountyCountyFremont County Courthouse SealLocation within the U.S. state of IdahoIdaho's location within the U.S.Coordinates: 44°13′N 111°29′W / 44.22°N 111.48°W / 44.22; -111.48Country United StatesState IdahoFoundedMarch 4, 1893Named forJohn C. FrémontSeatSt. AnthonyLargest citySt. AnthonyArea • Total1,896 sq mi (4,910 km2) • Land1,864 sq mi (4,83...

 

English politician and pirate Arms of Killigrew: Argent, an eagle displayed with two heads sable a bordure of the second bezantée. The bezantée bordure indicates a connection to the ancient Earls of Cornwall Sir John Killigrew (died 5 March 1584) of Arwenack, near Penryn, Cornwall, was the second Governor of Pendennis Castle (1568–1584),[1] appointed by Queen Elizabeth I, as stated on his father's brass in St Budock's Church.[2] He was MP for Lostwithiel in 1563 and twice ...

Кальмарская войнаОсновной конфликт: Датско-шведские войны Дата 1611—1613 Место Скандинавский полуостров Причина Шведские притязания на датские владения на Скандинавском п-ве Итог Победа Датско-норвежского королевства. Кнередский мир Противники Датско-норвежская уния Ко...

 

2014 film directed by Deva Katta Autonagar SuryaMovie PosterDirected byDeva KattaWritten byDeva KattaProduced byK. Achi ReddyStarringNaga ChaitanyaSamantha Ruth PrabhuCinematographySrikanth NarojEdited byGautham RajuMusic byAnoop RubensProductioncompanyMax India ProductionsDistributed byCineGalaxy Inc.,(Overseas)Sri Venkateswara Creations,Hari PicturesRelease date 27 June 2014 (2014-06-27)[1] Running time157 minutes(Initial Version)[2]145 minutes(Final Version)&...

 

Fruit of some plants of the genus Prunus For other uses, see Cherry (disambiguation).Not to be confused with Chery.Cherry tree and cherry wood redirect here. For other uses, see Cherry tree (disambiguation) and Cherrywood (disambiguation). Red cherries with stems Prunus avium, sweet cherry (a true cherry species) A cherry is the fruit of many plants of the genus Prunus, and is a fleshy drupe (stone fruit). Commercial cherries are obtained from cultivars of several species, such as the sweet P...

Braille alphabet for all Ethiopic languages Ge'ez BrailleScript type alphabet Print basisGe'ez alphabetLanguagesAmharic, Tigrinya, Tigre, Harari, other Ethiosemetic languagesRelated scriptsParent systemsBrailleEnglish BrailleGe'ez Braille Ge'ez Braille is the braille alphabet for all Ethiopic languages. Letter values are mostly in line with international usage. Alphabet Ge'ez Braille is a consonant–vowel alphabet, not an abugida like the print Ge'ez script. However, because the alphabetic c...

 

أمنتت الإلهة أمنتت على هيئة سيدة تحمل على رأسها علامة الغرب. تفاصيل يمكن اعتبارها بديلة لإيزيس و حتحور في العالم الآخر. يرمز إلى إلهة الغرب مستقبلة الأموات في العالم الآخر اسمه في الهيروغليفية تعديل مصدري - تعديل   جزء من سلسلة مقالات حولديانة قدماء المصريين مفاهيم الحي�...