Multibrot set

Multibrot 3 at the bottom-left of the main part.
Detail of Multijulia 8.
Multibrot 4.
Multibrot exponent 0 - 8

In mathematics, a Multibrot set is the set of values in the complex plane whose absolute value remains below some finite value throughout iterations by a member of the general monic univariate polynomial family of recursions.[1][2][3] The name is a portmanteau of multiple and Mandelbrot set. The same can be applied to the Julia set, this being called Multijulia set.

where d ≥ 2. The exponent d may be further generalized to negative and fractional values.[4]

Examples[5][6]

The case of

is the classic Mandelbrot set from which the name is derived.

The sets for other values of d also show fractal images[7] when they are plotted on the complex plane.

Each of the examples of various powers d shown below is plotted to the same scale. Values of c belonging to the set are black. Values of c that have unbounded value under recursion, and thus do not belong in the set, are plotted in different colours, that show as contours, depending on the number of recursions that caused a value to exceed a fixed magnitude in the Escape Time algorithm.

Positive powers

The example d = 2 is the original Mandelbrot set. The examples for d > 2 are often called multibrot sets. These sets include the origin and have fractal perimeters, with (d − 1)-fold rotational symmetry.

zz2 + c
zz3 + c
zz4 + c
zz5 + c
zz6 + c
zz96 + c
zz96 + c detail x40

Negative powers

When d is negative the set appears to surround but does not include the origin, However this is just an artifact of the fixed maximum radius allowed by the Escape Time algorithm, and is not a limit of the sets that actually have a shape in the middle with an no hole (You can see this by using the Lyapunov exponent [No hole because the origin diverges to undefined not infinity because the origin {0 or 0+0i} taken to a negative power becomes undefined]). There is interesting complex behaviour in the contours between the set and the origin, in a star-shaped area with (1 − d)-fold rotational symmetry. The sets appear to have a circular perimeter, however this is an artifact of the fixed maximum radius allowed by the Escape Time algorithm, and is not a limit of the sets that actually extend in all directions to infinity.

zz−2 + c
zz−3 + c
zz−4 + c
zz−5 + c
zz−6 + c

Fractional powers

Rendering along the exponent

An alternative method is to render the exponent along the vertical axis. This requires either fixing the real or the imaginary value, and rendering the remaining value along the horizontal axis. The resulting set rises vertically from the origin in a narrow column to infinity. Magnification reveals increasing complexity. The first prominent bump or spike is seen at an exponent of 2, the location of the traditional Mandelbrot set at its cross-section. The third image here renders on a plane that is fixed at a 45-degree angle between the real and imaginary axes. [8]

Multibrot rendered with real value along horizontal axis and exponent along vertical axis, imaginary value fixed at zero
Multibrot rendered with imaginary value on horizontal axis and exponent on vertical axis, real value fixed at zero
Multibrot rendered with exponent on vertical axis along a plane angled 45-degrees between the real and imaginary axes.

Rendering images

All the above images are rendered using an Escape Time algorithm that identifies points outside the set in a simple way. Much greater fractal detail is revealed by plotting the Lyapunov exponent,[9] as shown by the example below. The Lyapunov exponent is the error growth-rate of a given sequence. First calculate the iteration sequence with N iterations, then calculate the exponent as

and if the exponent is negative the sequence is stable. The white pixels in the picture are the parameters c for which the exponent is positive aka unstable. The colours show the periods of the cycles which the orbits are attracted to. All points colored dark-blue (outside) are attracted by a fixed point, all points in the middle (lighter blue) are attracted by a period 2 cycle and so on.

Enlarged first quadrant of the multibrot set for the iteration zz−2 + c rendered with the Escape Time algorithm.
Enlarged first quadrant of the multibrot set for the iteration zz−2 + c rendered using the Lyapunov exponent of the sequence as a stability criterion rather than using the Escape Time algorithm. Periodicity checking was used to colour the set according to the period of the cycles of the orbits.

Pseudocode

ESCAPE TIME ALGORITHM

for each pixel on the screen do
    x = x0 = x co-ordinate of pixel
    y = y0 = y co-ordinate of pixel
  
    iteration := 0
    max_iteration := 1000
  
    while (x*x + y*y ≤ (2*2) and iteration < max_iteration do
        /* INSERT CODE(S)FOR Z^d FROM TABLE BELOW */
        iteration := iteration + 1
  
    if iteration = max_iteration then
        colour := black
    else
        colour := iteration
  
    plot(x0, y0, colour)

The complex value z has coordinates (x,y) on the complex plane and is raised to various powers inside the iteration loop by codes shown in this table. Powers not shown in the table can be obtained by concatenating the codes shown.

z−2 z−1 z2
(for Mandelbrot set)
z3 z5 zn

d=x^4+2*x^2*y^2+y^4
assert d != 0
xtmp = (x^2-y^2)/d+a
y = -2*x*y/d+b
x = xtmp

d=x^2+y^2
assert d != 0
x = x/d + a
y= -y/d + b

xtmp=x^2-y^2 + a
y=2*x*y + b
x=xtmp

xtmp=x^3-3*x*y^2 + a
y=3*x^2*y-y^3 + b
x=xtmp

xtmp=x^5-10*x^3*y^2+5*x*y^4 + a
y=5*x^4*y-10*x^2*y^3+y^5 + b
x=xtmp

xtmp=(x*x+y*y)^(n/2)*cos(n*atan2(y,x)) + a
y=(x*x+y*y)^(n/2)*sin(n*atan2(y,x)) + b
x=xtmp

References

  1. ^ "Definition of multibrots". Retrieved 2008-09-28.
  2. ^ "Multibrots". Retrieved 2008-09-28.
  3. ^ Wolf Jung. "Homeomorphisms on Edges of the Mandelbrot Set" (PDF). p. 23. The Multibrot set Md is the connectedness locus of the family of unicritical polynomials zd + c, d ≥ 2
  4. ^ "WolframAlpha Computation Knowledge Engine".
  5. ^ "23 pretty JavaScript fractals". 23 October 2008. Archived from the original on 2014-08-11.
  6. ^ "Javascript Fractals". Archived from the original on 2014-08-19.
  7. ^ "Animated morph of multibrots d = −7 to 7". Retrieved 2008-09-28.
  8. ^ Fractal Generator, "Multibrot Slice"
  9. ^ Ken Shirriff (Sep 1993). "An Investigation of Fractals Generated by z → 1/zn + c". Computers & Graphics. 17 (5): 603–607. doi:10.1016/0097-8493(93)90012-x. Retrieved 2008-09-28.

Read other articles:

جزء من سلسلة مقالات حولالتصويت الاقتراعورقة اقتراع اقتراع غيابي اقتراع مؤقت نموذج ورقة اقتراع  [لغات أخرى]‏ المرشحون و‌مقاييس الاقتراع مرشح الكتابة  [لغات أخرى]‏ دائرة انتخابية قائمة المرشحين المؤقتة بطاقة الجمع صندوق أوراق الاقتراع تصويت إجباري تصويت مبك

Rio MartilLatar belakangNama lahirAntonius Rio Alex BuloLahir(1975-05-02)2 Mei 1975[1]Sleman, DI Yogyakarta, IndonesiaMeninggal8 Agustus 2008(2008-08-08) (umur 33)[2]Karangtengah, Cilongok, Banyumas, IndonesiaHukumanHukuman matiPembunuhanJumlah korban5 orangTanggalSejak 1997 hingga 12 Januari 2001 (2001-01-12)NegaraIndonesiaSenjataMartil Antonius Rio Alex Bulo atau lebih dikenal dengan nama Rio Martil (2 Mei 1975 – 8 Agustus 2008) adalah pembunuh bera...

البحيرات العظمى  ، و    المنطقة البلد الولايات المتحدة كندا  الخصائص تعديل مصدري - تعديل   45°45′N 84°0′W / 45.750°N 84.000°W / 45.750; -84.000   لمعانٍ أخرى، طالع البحيرات العظمى (توضيح). صورة من الاقمار الاصطناعية للبحيرات العظمى خريطة حوض البحيرات العظمى البحير

العلاقات التشادية الفنلندية تشاد فنلندا   تشاد   فنلندا تعديل مصدري - تعديل   العلاقات التشادية الفنلندية هي العلاقات الثنائية التي تجمع بين تشاد وفنلندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة تشاد فنل�...

Prime minister and Conducător of Romania during World War II This article may be too long to read and navigate comfortably. Please consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (July 2023)MarshalIon AntonescuOfficial portrait, 1942Conducător of RomaniaIn office6 September 1940 – 23 August 1944Preceded byPosition establishedSucceeded byPosition abolished43rd Prime Minister of RomaniaIn ...

ماما روماMamma Roma (بالإيطالية) معلومات عامةالصنف الفني فيلم دراما الموضوع دعارة تاريخ الصدور 1962 مدة العرض 105 دقيقة اللغة الأصلية الإيطالية العرض أبيض وأسود البلد إيطاليا صيغة الفيلم فيلم 35 مم الطاقمالمخرج بيير باولو بازوليني السيناريو بيير باولو بازوليني البطولة  القائم�...

Air Manas ІАТАZM ІКАОMBB ПозивнийAIR MANAS Тип авіакомпаніяДата заснування 2006Завершення діяльності 2022Хаби Манас (аеропорт)Додаткові хаби Ош (аеропорт)Розмір флоту 2Пунктів призначення 9Штаб-квартира Бішкек, КиргизстанСайт airmanas.com Boeing 737-800 Air Manas Air Manas — бюджетний авіаперевізник К

Suborder of brittle stars Basketstars Astroboa nuda basket star feeding at night in the Red Sea Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Echinodermata Class: Ophiuroidea Order: Phrynophiurida Suborder: EuryalinaLamarck, 1816 Families Asteronychidae Asteroschematidae Gorgonocephalidae Euryalidae The Euryalida are an order of brittle stars,[1] which includes large species with either branching arms (called basket stars) or long and curling arms (called snake...

Tampilan layar sistem navigasi kendaraan Sistem navigasi kendaraan adalah perangkat navigasi berkendaraan modern yang digunakan untuk memandu perjalanan dari suatu tempat ke suatu tujuan tertentu, dengan menggunakan perangkat peta digital dan informasi posisi dengan menggunakan satelit GPS. Sistem navigasi kendaraan sudah merupakan perlengkapan standar kendaraan mewah, dan bisa dibeli perangkat portabel dari penjual Sitem navigasi kendaraan. Perlengkapan sistem navigasi kendaraan Peta digital...

Indian children's television channel Television channel Nickelodeon SonicCountryIndiaBroadcast areaIndiaNepalBangladeshHeadquartersMumbai, IndiaProgrammingLanguage(s)HindiTamilTeluguKannadaMalayalamBengaliMarathiPicture format576i SDTVOwnershipOwnerViacom18Sister channelsNickelodeonNickelodeon HD+Nick Jr.Sports18HistoryLaunchedDecember 20, 2011; 11 years ago (2011-12-20)LinksWebsitesonicgang.com Nickelodeon Sonic (formerly Sonic-Nickelodeon) is an Indian children's pay telev...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: アンドロニコス・パレオロゴス テッサロニキ専制公 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年5月) �...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) يقين بيدو معلومات شخصية الميلاد سنة 1993 (العمر 29–30 سنة)  إدلب  مواطنة سوريا الحياة العملية المهنة صحفي إذاعي،  وصحفي مستقل  اللغات العربية  الجو�...

1952 drama film directed by Lew Landers Arctic FlightTheatrical posterDirected byLew LandersWritten by Robert Hill George Bricker Based onShadow of the Curtainby Ewing ScottProduced byLindsley ParsonsStarring Wayne Morris Alan Hale Jr. Lola Albright CinematographyJohn L. RussellEdited byAce HermanMusic byEdward J. KayProductioncompanyMonogram Pictures Corp.Distributed byMonogram Pictures Corp.Release date October 19, 1952 (1952-10-19) Running time78 minutesCountryUnited StatesL...

1568 battle of the Dutch Revolt This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Battle of Jodoigne – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remove this template message) Battle of the River Guete or Battle of JodoignePart of the Dutch RevoltEngraving of the Battle of the River Guete (Rome, 1632)Date20 October ...

1938 American crime drama film directed by Leslie Goodwins Crime RingTheatrical poster for filmDirected byLeslie GoodwinsScreenplay byJ. Robert BrenGladys AtwaterStory byReginald TavinerProduced byCliff ReidStarringAllan LaneFrances MercerCinematographyJack MacKenzieEdited byDesmond MarquetteMusic byRoy WebbProductioncompanyRKO Radio PicturesRelease date July 8, 1938 (1938-07-08) (US)[1] Running time70 minutesCountryUnited StatesLanguageEnglish Crime Ring is a 1938 ...

American ultrarunnerMicah TruePersonal informationBirth nameMichael Randall HickmanNicknameCaballo BlancoNationalityAmericanBorn(1953-11-10)November 10, 1953[1]Oakland, California, U.S.DiedMarch 27, 2012(2012-03-27) (aged 58)[2]Gila Wilderness, New Mexico, U.S.SportSportBoxingRunningEventsMiddleweight boxingUltramarathon running Micah True (November 10, 1953 – March 27, 2012), born Michael Randall Hickman and also known as Caballo Blanco (white horse), was an ...

Private high school in Bergen County, New Jersey, United States Frisch SchoolAddress120 West Century RoadParamus, Bergen County, New Jersey 07652United StatesCoordinates40°56′03″N 74°04′49″W / 40.934173°N 74.080172°W / 40.934173; -74.080172InformationTypePrivate High School, YeshivaMottoCougars Run TogetherEstablished1972FounderR. Menachem Meier and Alfred FrischNCES School ID00868382[2]PrincipalRabbi Eli Ciner[1]Asst. principalsRabbi Joshua...

Sepak bola pada Pekan Olahraga Provinsi Sulawesi SelatanBadan yang mengaturPSSI & KONIAsprov PSSI Sulsel & KONI SulselNegara IndonesiaJumlah tim12 (2014, 2018)8 (2022)Juara bertahan liga Makassar(gelar ke-4) (2022)Klub tersukses Makassar Sepak bola pada Pekan Olahraga Provinsi Sulawesi Selatan adalah salah satu cabang olahraga yang diperlombakan pada Pekan Olahraga Daerah Sulawesi Selatan yang diselenggarakan setiap empat tahun sekali oleh KONI Sulawesi Selatan. Partisipasi kabup...

Ecoregion of India and Sri Lanka Deccan thorn scrub forestsBlackbucks at Ranibennur Blackbuck SanctuaryEcoregion territory (in purple)EcologyRealmIndomalayanBiomeDeserts and xeric shrublandsBorders List Central Deccan Plateau dry deciduous forestsEast Deccan dry evergreen forestsGodavari-Krishna mangrovesNarmada Valley dry deciduous forestsNorth Western Ghats moist deciduous forestsSouth Deccan Plateau dry deciduous forestsSri Lanka dry-zone dry evergreen forests GeographyArea338,197 km2...

School LaneSchool Lane station in 2017General informationLocationSchool Lane west of Edmonds Avenue Drexel Hill, Pennsylvania.Coordinates39°56′55″N 75°18′00″W / 39.9487°N 75.2999°W / 39.9487; -75.2999Owned bySEPTAPlatforms2 side platformsTracks2ConstructionStructure typeOpen stone shedParkingNoHistoryElectrifiedOverhead linesServices Preceding station SEPTA Following station Aroniminktoward Media–Orange Street Route 101 Huey Avenuetoward 69th Street T.C. ...