Koch snowflake

The first four iterations of the Koch snowflake
The first seven iterations in animation
Zooming into a vertex of the Koch curve
Zooming into a point that is not a vertex may cause the curve to rotate
Koch antisnowflake
First four iterations
Sixth iteration

The Koch snowflake (also known as the Koch curve, Koch star, or Koch island[1][2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry"[3] by the Swedish mathematician Helge von Koch.

The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles. The areas enclosed by the successive stages in the construction of the snowflake converge to times the area of the original triangle, while the perimeters of the successive stages increase without bound. Consequently, the snowflake encloses a finite area, but has an infinite perimeter.

The Koch snowflake has been constructed as an example of a continuous curve where drawing a tangent line to any point is impossible. Unlike the earlier Weierstrass function where the proof was purely analytical, the Koch snowflake was created to be possible to geometrically represent at the time, so that this property could also be seen through "naive intuition".[3]

Origin and history

There is no doubt that the snowflake curve is based on the von Koch curve and its iterative construction. However, the picture of the snowflake does not appear in either the original article published in 1904[3] nor in the extended 1906 memoir.[4] So one can ask who is the man who constructed the snowflake figure first. An investigation of this question suggests that the snowflake curve is due to the American mathematician Edward Kasner.[5][6]

Construction

The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

  1. divide the line segment into three segments of equal length.
  2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
  3. remove the line segment that is the base of the triangle from step 2.

The first iteration of this process produces the outline of a hexagram.

The Koch snowflake is the limit approached as the above steps are followed indefinitely. The Koch curve originally described by Helge von Koch is constructed using only one of the three sides of the original triangle. In other words, three Koch curves make a Koch snowflake.

A Koch curve–based representation of a nominally flat surface can similarly be created by repeatedly segmenting each line in a sawtooth pattern of segments with a given angle.[7]

A fractal rough surface built from multiple Koch curve iterations

Properties

Perimeter of the Koch snowflake

Each iteration multiplies the number of sides in the Koch snowflake by four, so the number of sides after iterations is given by:

If the original equilateral triangle has sides of length , the length of each side of the snowflake after iterations is:

an inverse power of three multiple of the original length. The perimeter of the snowflake after iterations is:

The Koch curve has an infinite length, because the total length of the curve increases by a factor of with each iteration. Each iteration creates four times as many line segments as in the previous iteration, with the length of each one being the length of the segments in the previous stage. Hence, the length of the curve after iterations will be times the original triangle perimeter and is unbounded, as tends to infinity.

Limit of perimeter

As the number of iterations tends to infinity, the limit of the perimeter is:

since .

An -dimensional measure exists, but has not been calculated so far. Only upper and lower bounds have been invented.[clarification needed] [8]

Area of the Koch snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration is:

The area of each new triangle added in an iteration is of the area of each triangle added in the previous iteration, so the area of each triangle added in iteration is:

where is the area of the original triangle. The total new area added in iteration is therefore:

The total area of the snowflake after iterations is:

Collapsing the geometric sum gives:

Limits of area

The limit of the area is:

since .

Thus, the area of the Koch snowflake is of the area of the original triangle. Expressed in terms of the side length of the original triangle, this is:[9]

Solid of revolution

The volume of the solid of revolution of the Koch snowflake about an axis of symmetry of the initiating equilateral triangle of unit side is [10]

Other properties

The Koch snowflake is self-replicating with six smaller copies surrounding one larger copy at the center. Hence, it is an irrep-7 irrep-tile (see Rep-tile for discussion).

The fractal dimension of the Koch curve is . This is greater than that of a line () but less than that of Peano's space-filling curve ().

It is impossible to draw a tangent line to any point of the curve.

Representation as a de Rham curve

The Koch curve arises as a special case of a de Rham curve. The de Rham curves are mappings of Cantor space into the plane, usually arranged so as to form a continuous curve. Every point on a continuous de Rham curve corresponds to a real number in the unit interval. For the Koch curve, the tips of the snowflake correspond to the dyadic rationals: each tip can be uniquely labeled with a distinct dyadic rational.

Tessellation of the plane

Tessellation by two sizes of Koch snowflake

It is possible to tessellate the plane by copies of Koch snowflakes in two different sizes. However, such a tessellation is not possible using only snowflakes of one size. Since each Koch snowflake in the tessellation can be subdivided into seven smaller snowflakes of two different sizes, it is also possible to find tessellations that use more than two sizes at once.[11] Koch snowflakes and Koch antisnowflakes of the same size may be used to tile the plane.

Thue–Morse sequence and turtle graphics

A turtle graphic is the curve that is generated if an automaton is programmed with a sequence. If the Thue–Morse sequence members are used in order to select program states:

  • If , move ahead by one unit,
  • If , rotate counterclockwise by an angle of ,

the resulting curve converges to the Koch snowflake.

Representation as Lindenmayer system

The Koch curve can be expressed by the following rewrite system (Lindenmayer system):

Alphabet : F
Constants : +, −
Axiom : F
Production rules : F → F+F--F+F

Here, F means "draw forward", - means "turn right 60°", and + means "turn left 60°".

To create the Koch snowflake, one would use F--F--F (an equilateral triangle) as the axiom.

Variants of the Koch curve

Following von Koch's concept, several variants of the Koch curve were designed, considering right angles (quadratic), other angles (Cesàro), circles and polyhedra and their extensions to higher dimensions (Sphereflake and Kochcube, respectively)

Variant (dimension, angle) Illustration Construction
≤1D, 60-90° angle
Cesàro fractal (85°)
The Cesàro fractal is a variant of the Koch curve with an angle between 60° and 90°.[citation needed]

First four iterations of a Cesàro antisnowflake (four 60° curves arranged in a 90° square)
≈1.46D, 90° angle
Quadratic type 1 curve

First two iterations
1.5D, 90° angle
Quadratic type 2 curve
Minkowski Sausage[12]

First two iterations. Its fractal dimension equals and is exactly half-way between dimension 1 and 2. It is therefore often chosen when studying the physical properties of non-integer fractal objects.
≤2D, 90° angle
Third iteration
Minkowski Island

Four quadratic type 2 curves arranged in a square
≈1.37D, 90° angle
Quadratic flake

4 quadratic type 1 curves arranged in a polygon: First two iterations. Known as the "Minkowski Sausage",[13][14][15] its fractal dimension equals .[16]
≤2D, 90° angle
Quadratic antiflake
Anticross-stitch curve, the quadratic flake type 1, with the curves facing inwards instead of outwards (Vicsek fractal)
≈1.49D, 90° angle
Quadratic Cross
Another variation. Its fractal dimension equals .
≤2D, 90° angle
Quadratic island[17]

Quadratic curve, iterations 0, 1, and 2; dimension of
≤2D, 60° angle
von Koch surface

First three iterations of a natural extension of the Koch curve in two dimensions.
≤2D, 90° angle
First (blue block), second (plus green blocks), third (plus yellow blocks) and fourth (plus transparent blocks) iterations of the type 1 3D Koch quadratic fractal
Extension of the quadratic type 1 curve. The illustration at left shows the fractal after the second iteration

Animation quadratic surface
≤3D, any
Koch curve in 3D
A three-dimensional fractal constructed from Koch curves. The shape can be considered a three-dimensional extension of the curve in the same sense that the Sierpiński pyramid and Menger sponge can be considered extensions of the Sierpinski triangle and Sierpinski carpet. The version of the curve used for this shape uses 85° angles.

Squares can be used to generate similar fractal curves. Starting with a unit square and adding to each side at each iteration a square with dimension one third of the squares in the previous iteration, it can be shown that both the length of the perimeter and the total area are determined by geometric progressions. The progression for the area converges to while the progression for the perimeter diverges to infinity, so as in the case of the Koch snowflake, we have a finite area bounded by an infinite fractal curve.[18] The resulting area fills a square with the same center as the original, but twice the area, and rotated by radians, the perimeter touching but never overlapping itself.

The total area covered at the th iteration is:

while the total length of the perimeter is: which approaches infinity as increases.

Functionalisation

Graph of the Koch's function

In addition to the curve, the paper by Helge von Koch that has established the Koch curve shows a variation of the curve as an example of a continuous everywhere yet nowhere differentiable function that was possible to represent geometrically at the time. From the base straight line, represented as AB, the graph can be drawn by recursively applying the following on each line segment:

  • Divide the line segment (XY) into three parts of equal length, divided by dots C and E.
  • Draw a line DM, where M is the middle point of CE, and DM is perpendicular to the initial base of AB, having the length of .
  • Draw the lines CD and DE and erase the lines CE and DM.

Each point of AB can be shown to converge to a single height. If is defined as the distance of that point to the initial base, then as a function is continuous everywhere and differentiable nowhere.[3]

See also

References

  1. ^ Addison, Paul S. (1997). Fractals and Chaos: An Illustrated Course. Institute of Physics. p. 19. ISBN 0-7503-0400-6.
  2. ^ Lauwerier, Hans (1991). Fractals: Endlessly Repeated Geometrical Figures. Translated by Gill-Hoffstädt, Sophia. Princeton University Press. p. 36. ISBN 0-691-02445-6. Mandelbrot called this a Koch island.
  3. ^ a b c d von Koch, Helge (1904). "Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire". Arkiv för matematik, astronomi och fysik (in French). 1: 681–704. JFM 35.0387.02.
  4. ^ von Koch, Helge (1906). "Une méthode géométrique élémentaire pour l'étude de certaines questions de la théorie des courbes planes". Acta Mathematica (in French). 30: 145–174. doi:10.1007/BF02418570. ISSN 0001-5962.
  5. ^ Demichel, Yann (2024-09-13). "Who Invented von Koch's Snowflake Curve?". The American Mathematical Monthly. 131 (8): 662–668. arXiv:2308.15093. doi:10.1080/00029890.2024.2363737. ISSN 0002-9890.
  6. ^ Kasner, Edward; Newman, James R. (2001). Mathematics and the imagination. Mineola, N.Y: Dover Publications. ISBN 978-0-486-41703-5.
  7. ^ Alonso-Marroquin, F.; Huang, P.; Hanaor, D.; Flores-Johnson, E.; Proust, G.; Gan, Y.; Shen, L. (2015). "Static friction between rigid fractal surfaces" (PDF). Physical Review E. 92 (3): 032405. Bibcode:2015PhRvE..92c2405A. doi:10.1103/PhysRevE.92.032405. hdl:2123/13835. PMID 26465480. — Study of fractal surfaces using Koch curves.
  8. ^ Zhu, Zhi Wei; Zhou, Zuo Ling; Jia, Bao Guo (October 2003). "On the Lower Bound of the Hausdorff Measure of the Koch Curve". Acta Mathematica Sinica. 19 (4): 715–728. doi:10.1007/s10114-003-0310-2. S2CID 122517792.
  9. ^ "Koch Snowflake". ecademy.agnesscott.edu.
  10. ^ McCartney, Mark (2020-04-16). "The area, centroid and volume of revolution of the Koch curve". International Journal of Mathematical Education in Science and Technology. 52 (5): 782–786. doi:10.1080/0020739X.2020.1747649. ISSN 0020-739X. S2CID 218810213.
  11. ^ Burns, Aidan (1994). "Fractal tilings". Mathematical Gazette. 78 (482): 193–6. doi:10.2307/3618577. JSTOR 3618577. S2CID 126185324..
  12. ^ Paul S. Addison, Fractals and Chaos: An illustrated course, p. 19, CRC Press, 1997 ISBN 0849384435.
  13. ^ Weisstein, Eric W. (1999). "Minkowski Sausage", archive.lib.msu.edu. Accessed: 21 September 2019.
  14. ^ Pamfilos, Paris. "Minkowski Sausage", user.math.uoc.gr/~pamfilos/. Accessed: 21 September 2019.
  15. ^ Weisstein, Eric W. "Minkowski Sausage". MathWorld. Retrieved 22 September 2019.
  16. ^ Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, p.48. New York: W. H. Freeman. ISBN 9780716711865. Cited in Weisstein, Eric W. "Minkowski Sausage". MathWorld. Retrieved 22 September 2019..
  17. ^ Appignanesi, Richard; ed. (2006). Introducing Fractal Geometry. Icon. ISBN 978-1840467-13-0.
  18. ^ Demonstrated by James McDonald in a public lecture at KAUST University on January 27, 2013. "KAUST | Academics | Winter Enrichment Program". Archived from the original on 2013-01-12. Retrieved 2013-01-29. retrieved 29 January 2013.
External videos
video icon Koch Snowflake Fractal
Khan Academy

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Laut Mirtoa – berita · surat kabar · buku · cendekiawan · JSTOR Laut Mirtoa (Yunani): Πέλαγος Mυρτώο, Myrtöo Pelagos) adalah bagian dari Laut Tengah yang terletak di antara Cyclades dan Pelo...

 

 

Work by Copernicus De hypothesibus motuum coelestium a se constitutis commentariolus Ms. Austrian National Library, 10530, f. 34rAuthorNicolaus CopernicusLanguageLatinSubjectAstronomyPublication date1514 The Commentariolus (Little Commentary) is Nicolaus Copernicus's brief outline of an early version of his revolutionary heliocentric theory of the universe.[1] After further long development of his theory, Copernicus published the mature version in 1543 in his landmark work, De revolut...

 

 

NFL team season 1993 Minnesota Vikings seasonOwnerRoger HeadrickGeneral managerJeff DiamondHead coachDennis GreenHome fieldHubert H. Humphrey MetrodomeResultsRecord9–7Division place2nd NFC CentralPlayoff finishLost Wild Card Playoffs(at Giants) 10–17Uniform ← 1992 Vikings seasons 1994 → The 1993 season was the Minnesota Vikings' 33rd in the National Football League (NFL). The Vikings failed to match their 11–5 record from the previous season, finishing at 9–...

Pour les articles homonymes, voir Parti unioniste. Parti unionisteUnionist Party Présentation Chef Robert Laird BordenArthur Meighen Fondation 1917 Disparition 1920 Fusionné dans Parti national libéral et conservateur Composé de Parti conservateur et libéraux-unionistes Représentation Élections de 1917 153  /  235 modifier  Le Parti unioniste est un parti politique canadien formé en 1917 par les députés qui appuient le gouvernement d'unité nationale du premier minis...

 

 

Pour les articles homonymes, voir Trnava (homonymie). Trnava Héraldique Drapeau Trnava Rue M.S.Trnavský Administration Pays Slovaquie Région Trnava District Trnava Statut Capitale régionale Primator (maire) Mandat Peter Bročka (Indépendant) mandat : 2018-2022 Code postal 917 01 Plaqueminéralogique TT Code LAU 2 506745 Démographie Gentilé Trnaviens Population 65 207 hab. (31 déc. 2018) Densité 912 hab./km2 Géographie Coordonnées 48° 22′ 41″ ...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Carrion (disambigua). CarrionCarrion (a destra) con Shriek contro l'Uomo Ragno, disegni da Bagley/Emberlin UniversoUniverso Marvel Lingua orig.Inglese AutoriBill Mantlo Jim Mooney Frank Springer EditoreMarvel Comics 1ª app.dicembre 1978 1ª app. inSpectacular Spider-Man n. 25 Caratteristiche immaginarieAlter ego Miles Warren (clone) Malcolm McBride William Allen SessoMaschio Poteri levitazione telepatia controllo dell...

B

  此條目介紹的是拉丁字母中的第2个字母。关于其他用法,请见「B (消歧义)」。   提示:此条目页的主题不是希腊字母Β、西里尔字母В、Б、Ъ、Ь或德语字母ẞ、ß。 BB b(见下)用法書寫系統拉丁字母英文字母ISO基本拉丁字母(英语:ISO basic Latin alphabet)类型全音素文字相关所属語言拉丁语读音方法 [b][p][ɓ](适应变体)Unicode编码U+0042, U+0062字母顺位2数值 2歷史發...

 

 

Part of a series onDiscrimination Forms Institutional Structural Attributes Age Caste Class Dialect Disability Genetic Hair texture Height Language Looks Mental disorder Race / Ethnicity Skin color Scientific racism Rank Sex Sexual orientation Species Size Viewpoint Social Arophobia Acephobia Adultism Anti-albinism Anti-autism Anti-homelessness Anti-drug addicts Anti-intellectualism Anti-intersex Anti-left handedness Anti-Masonry Antisemitism Aporophobia Audism Biphobia Clannism Cro...

 

 

2002 film CarnageFilm posterDirected byDelphine GleizeWritten byDelphine GleizeProduced byAntonio BazagaDenis DelcampeJérôme DopfferStarringChiara MastroianniCinematographyCrystel FournierEdited byFrançois QuiqueréMusic byÉric Neveux Jérôme RebotierDavid HadjadjDistributed byDiaphana FilmsRelease dates 17 May 2002 (2002-05-17) (Cannes) 13 November 2002 (2002-11-13) (France) Running time130 minutesCountryFranceLanguageFrenchBudget€3.4 million[...

NBC affiliate in Marquette, Michigan WLUC-TVMarquette, MichiganUnited StatesChannelsDigital: 35 (UHF)Virtual: 6BrandingTV6Fox UP (on DT2)ProgrammingAffiliations6.1: NBC6.2: Foxfor others, see § SubchannelsOwnershipOwnerGray Television(Gray Television Licensee, LLC)HistoryFirst air dateApril 28, 1956 (68 years ago) (1956-04-28)Former call signsWDMJ-TV (1956–1964)Former channel number(s)Analog: 6 (VHF, 1956–2009)Former affiliationsCBS (1956–1992)ABC (secondary 1956–1...

 

 

Titan Maximumserie TV d'animazione Lingua orig.inglese PaeseStati Uniti AutoreTom Root, Matthew Senreich RegiaChris McKay MusicheShawn Patterson StudioShadowMachine Films, Stoopid Buddy Stoodios, Tom Is Awesome, Williams Street EditoreMatt Mariska ReteAdult Swim 1ª TV27 settembre – 22 novembre 2009 Episodi9 (completa) Durata ep.11 min Generecommedia nera, parodia Titan Maximum è una serie televisiva animata statunitense del 2009, cre...

 

 

Internet merupakan salah satu faktor terjadinya banjir informasi Banjir informasi atau kejenuhan informasi adalah suatu keadaan saat pengolahan informasi manusia telah berada di luar kapasitas kemampuan yang sesungguhnya.[1] Frasa ini (dalam bahasa Inggris: information overload) disebutkan dalam buku The Managing of Organizations karya Bertram Gross pada tahun 1964.[2] Dalam era globalisasi, semakin banyak orang terkoneksi dengan internet untuk melakukan penelitiannya sendiri ...

The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: No Tofu – news · newspapers · books · scholar · JSTOR (May 2014) (Learn how...

 

 

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Ratu Elizabeth II dari Britania RayaKepala PersemakmuranPotret resmi, 1959Ratu Br...

 

 

Casa MilàLa PedreraCasa MilàInformasi umumAlamat92, Passeig de GràciaKotaBarcelona, CatalunyaNegaraSpanyol Casa Milà atau dikenal sebagai La Pedrera adalah sebuah bangunan modernis di Barcelona, Catalonia, Spanyol. Itu adalah kediaman pribadi terakhir yang dirancang oleh arsitek Antoni Gaudi dan dibangun antara tahun 1906 dan 1912. Bangunan ini ditugaskan pada tahun 1906 oleh Pere Milà dan istrinya Roser Segimon. Pada saat itu kontroversial karena fasad batu bergelombang, memutar balkon ...

Questa pagina sull'argomento cronologia sembra trattare argomenti unificabili alla pagina Calendario luni-solare hindu. Commento: Sembra che parlino della stessa cosa Puoi contribuire unendo i contenuti in una pagina unica. Segui i suggerimenti del progetto di riferimento. Una pagina del calendario induista 1871-72 Il calendario induista era il calendario usato in India in epoca vedica, che dopo molti cambiamenti e modifiche a seconda delle diverse regioni si è suddiviso nei moderni ca...

 

 

SalamanderRentang fosil: Jura - Kini Salamander totol, Ambystoma maculatum Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Amphibia Ordo: UrodelaScopoli, 1777 Subordo beserta famili Cryptobranchoidea Cryptobranchidae Hynobiidae Salamandroidea Ambystomatidae Amphiumidae Plethodontidae Proteidae Rhyacotritonidae Salamandridae Sirenoidea Sirenidae Habitat salamander (hijau) Salamander atau semandar adalah nama umum bagi sekitar 550 spesies amfibi.[1] Mereka secara umum dici...

 

 

人的成長與發展 階段 受精卵 胚胎 胚胎發育 胎兒 嬰兒 幼兒 儿童早期 儿童 前青少年期 青少年 青壯年 中年 老年 生命歷程 人类受精 分娩 爬行學步(英语:Gross motor skill#Learning to walk) 语言习得 青春期 更年期 老化 临终 回光返照 死亡 发展心理学 產前與產後(英语:Prenatal and perinatal psychology) 新生兒與兒童 青少年 青年(英语:Positive Youth Development) 青壯年 成人(英语�...

1014 battle between the Kingdom of Ireland and an Irish-Norse alliance Battle of ClontarfPart of the Viking Invasions of IrelandBattle of Clontarf, oil on canvas painting by Hugh Frazer, 1826Date23 April 1014[1]LocationClontarf, Dublin53°21′54″N 06°11′51″W / 53.36500°N 6.19750°W / 53.36500; -6.19750Result Irish victory Viking power in Ireland broken Death of Brian BoruBelligerents Forces of the High King of Ireland Kingdom of DublinKingdom of Leinst...

 

 

Student nation of Uppsala University Norrland's NationUppsala University                  LocationVästra Ågatan 14 753 11 UppsalaSwedenLatin nameNatio NorlandicaEstablished1646; 378 years ago (1646)InspektorTobias SjöblomMembershipapprox. 8000Websitewww.norrlandsnation.se You can help expand this article with text translated from the corresponding article in Swedish. (December 2009) Click [show] for important tran...