Alexandrov topology

In topology, an Alexandrov topology is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every finite family of open sets is open; in Alexandrov topologies the finite qualifier is dropped.

A set together with an Alexandrov topology is known as an Alexandrov-discrete space or finitely generated space.

Alexandrov topologies are uniquely determined by their specialization preorders. Indeed, given any preorder ≤ on a set X, there is a unique Alexandrov topology on X for which the specialization preorder is ≤. The open sets are just the upper sets with respect to ≤. Thus, Alexandrov topologies on X are in one-to-one correspondence with preorders on X.

Alexandrov-discrete spaces are also called finitely generated spaces because their topology is uniquely determined by the family of all finite subspaces. Alexandrov-discrete spaces can thus be viewed as a generalization of finite topological spaces.

Due to the fact that inverse images commute with arbitrary unions and intersections, the property of being an Alexandrov-discrete space is preserved under quotients.

Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with the more geometrical Alexandrov spaces introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov.

Characterizations of Alexandrov topologies

Alexandrov topologies have numerous characterizations. Let X = <X, T> be a topological space. Then the following are equivalent:

  • Open and closed set characterizations:
    • Open set. An arbitrary intersection of open sets in X is open.
    • Closed set. An arbitrary union of closed sets in X is closed.
  • Neighbourhood characterizations:
    • Smallest neighbourhood. Every point of X has a smallest neighbourhood.
    • Neighbourhood filter. The neighbourhood filter of every point in X is closed under arbitrary intersections.
  • Interior and closure algebraic characterizations:
    • Interior operator. The interior operator of X distributes over arbitrary intersections of subsets.
    • Closure operator. The closure operator of X distributes over arbitrary unions of subsets.
  • Preorder characterizations:
    • Specialization preorder. T is the finest topology consistent with the specialization preorder of X i.e. the finest topology giving the preorder ≤ satisfying xy if and only if x is in the closure of {y} in X.
    • Open up-set. There is a preorder ≤ such that the open sets of X are precisely those that are upward closed i.e. if x is in the set and xy then y is in the set. (This preorder will be precisely the specialization preorder.)
    • Closed down-set. There is a preorder ≤ such that the closed sets of X are precisely those that are downward closed i.e. if x is in the set and yx then y is in the set. (This preorder will be precisely the specialization preorder.)
    • Downward closure. A point x lies in the closure of a subset S of X if and only if there is a point y in S such that xy where ≤ is the specialization preorder i.e. x lies in the closure of {y}.
  • Finite generation and category theoretic characterizations:
    • Finite closure. A point x lies within the closure of a subset S of X if and only if there is a finite subset F of S such that x lies in the closure of F. (This finite subset can always be chosen to be a singleton.)
    • Finite subspace. T is coherent with the finite subspaces of X.
    • Finite inclusion map. The inclusion maps fi : XiX of the finite subspaces of X form a final sink.
    • Finite generation. X is finitely generated i.e. it is in the final hull of the finite spaces. (This means that there is a final sink fi : XiX where each Xi is a finite topological space.)

Topological spaces satisfying the above equivalent characterizations are called finitely generated spaces or Alexandrov-discrete spaces and their topology T is called an Alexandrov topology.

Equivalence with preordered sets

The Alexandrov topology on a preordered set

Given a preordered set we can define an Alexandrov topology on X by choosing the open sets to be the upper sets:

We thus obtain a topological space .

The corresponding closed sets are the lower sets:

The specialization preorder on a topological space

Given a topological space X = <X, T> the specialization preorder on X is defined by:

xy if and only if x is in the closure of {y}.

We thus obtain a preordered set W(X) = <X, ≤>.

Equivalence between preorders and Alexandrov topologies

For every preordered set X = <X, ≤> we always have W(T(X)) = X, i.e. the preorder of X is recovered from the topological space T(X) as the specialization preorder. Moreover for every Alexandrov-discrete space X, we have T(W(X)) = X, i.e. the Alexandrov topology of X is recovered as the topology induced by the specialization preorder.

However for a topological space in general we do not have T(W(X)) = X. Rather T(W(X)) will be the set X with a finer topology than that of X (i.e. it will have more open sets). The topology of T(W(X)) induces the same specialization preorder as the original topology of the space X and is in fact the finest topology on X with that property.

Equivalence between monotonicity and continuity

Given a monotone function

f : XY

between two preordered sets (i.e. a function

f : XY

between the underlying sets such that x ≤ y in X implies f(x) ≤ f(y) in Y), let

T(f) : T(X)→T(Y)

be the same map as f considered as a map between the corresponding Alexandrov spaces. Then T(f) is a continuous map.

Conversely given a continuous map

gXY

between two topological spaces, let

W(g) : W(X)→W(Y)

be the same map as g considered as a map between the corresponding preordered sets. Then W(g) is a monotone function.

Thus a map between two preordered sets is monotone if and only if it is a continuous map between the corresponding Alexandrov-discrete spaces. Conversely a map between two Alexandrov-discrete spaces is continuous if and only if it is a monotone function between the corresponding preordered sets.

Notice however that in the case of topologies other than the Alexandrov topology, we can have a map between two topological spaces that is not continuous but which is nevertheless still a monotone function between the corresponding preordered sets. (To see this consider a non-Alexandrov-discrete space X and consider the identity map i : XT(W(X)).)

Category theoretic description of the equivalence

Let Set denote the category of sets and maps. Let Top denote the category of topological spaces and continuous maps; and let Pro denote the category of preordered sets and monotone functions. Then

T : ProTop and
W : TopPro

are concrete functors over Set that are left and right adjoints respectively.

Let Alx denote the full subcategory of Top consisting of the Alexandrov-discrete spaces. Then the restrictions

T : ProAlx and
W : AlxPro

are inverse concrete isomorphisms over Set.

Alx is in fact a bico-reflective subcategory of Top with bico-reflector TW : TopAlx. This means that given a topological space X, the identity map

i : T(W(X))→X

is continuous and for every continuous map

f : YX

where Y is an Alexandrov-discrete space, the composition

i −1f : YT(W(X))

is continuous.

Relationship to the construction of modal algebras from modal frames

Given a preordered set X, the interior operator and closure operator of T(X) are given by:

Int(S) = { x ∈ S : for all y ∈ X, x ≤ y implies y ∈ S }, and
Cl(S) = { x ∈ X : there exists a y ∈ S with x ≤ y }

for all S ⊆ X.

Considering the interior operator and closure operator to be modal operators on the power set Boolean algebra of X, this construction is a special case of the construction of a modal algebra from a modal frame i.e. from a set with a single binary relation. (The latter construction is itself a special case of a more general construction of a complex algebra from a relational structure i.e. a set with relations defined on it.) The class of modal algebras that we obtain in the case of a preordered set is the class of interior algebras—the algebraic abstractions of topological spaces.

Properties

Every subspace of an Alexandrov-discrete space is Alexandrov-discrete.[1]

The product of two Alexandrov-discrete spaces is Alexandrov-discrete.[2]

Every Alexandrov topology is first countable.

Every Alexandrov topology is locally compact in the sense that every point has a local base of compact neighbourhoods, since the smallest neighbourhood of a point is always compact.[3] Indeed, if is the smallest (open) neighbourhood of a point , in itself with the subspace topology any open cover of contains a neighbourhood of included in . Such a neighbourhood is necessarily equal to , so the open cover admits as a finite subcover.

Every Alexandrov topology is locally path connected.[4][5]

History

Alexandrov spaces were first introduced in 1937 by P. S. Alexandrov under the name discrete spaces, where he provided the characterizations in terms of sets and neighbourhoods.[6] The name discrete spaces later came to be used for topological spaces in which every subset is open and the original concept lay forgotten in the topological literature. On the other hand, Alexandrov spaces played a relevant role in Øystein Ore pioneering studies on closure systems and their relationships with lattice theory and topology.[7]

With the advancement of categorical topology in the 1980s, Alexandrov spaces were rediscovered when the concept of finite generation was applied to general topology and the name finitely generated spaces was adopted for them. Alexandrov spaces were also rediscovered around the same time in the context of topologies resulting from denotational semantics and domain theory in computer science.

In 1966 Michael C. McCord and A. K. Steiner each independently observed an equivalence between partially ordered sets and spaces that were precisely the T0 versions of the spaces that Alexandrov had introduced.[8][9] P. T. Johnstone referred to such topologies as Alexandrov topologies.[10] F. G. Arenas independently proposed this name for the general version of these topologies.[11] McCord also showed that these spaces are weak homotopy equivalent to the order complex of the corresponding partially ordered set. Steiner demonstrated that the equivalence is a contravariant lattice isomorphism preserving arbitrary meets and joins as well as complementation.

It was also a well-known result in the field of modal logic that a equivalence exists between finite topological spaces and preorders on finite sets (the finite modal frames for the modal logic S4). A. Grzegorczyk observed that this extended to a equivalence between what he referred to as totally distributive spaces and preorders. C. Naturman observed that these spaces were the Alexandrov-discrete spaces and extended the result to a category-theoretic equivalence between the category of Alexandrov-discrete spaces and (open) continuous maps, and the category of preorders and (bounded) monotone maps, providing the preorder characterizations as well as the interior and closure algebraic characterizations.[12]

A systematic investigation of these spaces from the point of view of general topology, which had been neglected since the original paper by Alexandrov was taken up by F. G. Arenas.[11]

See also

  • P-space, a space satisfying the weaker condition that countable intersections of open sets are open

References

  1. ^ Speer 2007, Theorem 7.
  2. ^ Arenas 1999, Theorem 2.2.
  3. ^ Speer, Timothy (16 August 2007). "A Short Study of Alexandroff Spaces". arXiv:0708.2136 [math.GN].Theorem 5
  4. ^ "Are minimal neighborhoods in an Alexandrov topology path-connected?". Mathematics Stack Exchange.
  5. ^ Arenas 1999, Theorem 2.8.
  6. ^ Alexandroff, P. (1937). "Diskrete Räume". Mat. Sb. New Series (in German). 2: 501–518.
  7. ^ O. Ore, Some studies on closure relations, Duke Math. J. 10 (1943), 761–785. See Marcel Erné, Closure, in Frédéric Mynard, Elliott Pearl (Editors), Beyond Topology, Contemporary mathematics vol. 486, American Mathematical Society, 2009, p.170ff
  8. ^ McCord, M. C. (1966). "Singular homology and homotopy groups of finite topological spaces". Duke Mathematical Journal. 33 (3): 465–474. doi:10.1215/S0012-7094-66-03352-7.
  9. ^ Steiner, A. K. (1966). "The Lattice of Topologies: Structure and Complementation". Transactions of the American Mathematical Society. 122 (2): 379–398. doi:10.2307/1994555. ISSN 0002-9947. JSTOR 1994555.
  10. ^ Johnstone, P. T. (1986). Stone spaces (1st paperback ed.). New York: Cambridge University Press. ISBN 978-0-521-33779-3.
  11. ^ a b Arenas, F. G. (1999). "Alexandroff spaces" (PDF). Acta Math. Univ. Comenianae. 68 (1): 17–25.
  12. ^ Naturman, C. A. (1991). Interior Algebras and Topology. Ph.D. thesis, University of Cape Town Department of Mathematics.

Read other articles:

Demam lembah riftMikrograf TEM yang memaparkan keadaan jaringan tubuh yang dijangkiti virus Demam Rift ValleyInformasi umumSpesialisasiPenyakit infeksi, kedokteran hewan  Virus Demam Rift Valley Klasifikasi virus Grup: Grup V ((−)ssRNA) Famili: Bunyaviridae Genus: Phlebovirus Spesies: Virus Demam Rift Valley Demam lembah rift (bahasa Inggris: rift valley fever, sering disingkat RVF) adalah penyakit yang terjadi akibat serangan virus RVF dari genus Phlebovirus, famili Phenuiviridae, dan...

 

Distrik Neihu distrik di Taiwan Tempat categoria:Articles mancats de coordenades Negara dengan pengakuan terbatasTaiwanKotaTaipei NegaraTaiwan Pembagian administratifXihu Village (en) Xikang Village (en) Xi'an Village (en) Gangqi Village (en) Gangdou Village (en) GangFu Village (en) Ganghua Village (en) Neihu Village (en) Hubin Village (en) Zixing Village (en) Dahu Village (en) Jinlong Village (en) Jinrui Village (en) Bishan Village (en) Ziyun Village (en) Qingbai Village (en) Huzhou Village ...

 

Circuit de Dijon-PrenoisLokasiDijon, FranceZona waktuGMT +1Acara besarFrench Grand Prix, Grand Prix de l'Age d'Or, Formula Renault 2.0 West European CupGrand Prix CircuitPanjang3.800 km (2.361 mi)Tikungan9Rekor lap1:02.985[1] (Ingo Gerstl, Toro Rosso STR1, 2015, BOSS GP Dijon Motors Cup)Short CircuitPanjang3.289 km (2.044 mi)Tikungan8 Dijon-Prenois adalah sirkuit balap sepanjang 3.801 km (2.362 mi) yang terletak di Prenois, dekat Dijon, Prancis. Trek bergelombang ini terkena...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Maurice Joyeux Naissance 29 janvier 1910Paris Décès 9 décembre 1991 (à 81 ans)Paris Première incarcération À l’âge de 14 ans, pour avoir cassé une côte au patron qui avait levé la main sur lui. Origine français Type de militance libraire écrivain essayiste action directe insoumis Cause défendue libertaire anarcho-syndicalisme modifier  Le numéro 8 de la revue La Rue, en 1970. Maurice Joyeux, né le 29 janvier 1910 à Paris et mort le 9 décembre 1991 dans cette vil...

 

Serbian politician Nataša MićićНаташа МићићMićić in 2001President of SerbiaActingIn office29 December 2002 – 27 January 2004Prime MinisterZoran ĐinđićZoran ŽivkovićPreceded byMilan MilutinovićSucceeded byDragan Maršićanin (acting)President of the National Assembly of SerbiaIn office6 December 2001 – 27 January 2004Preceded byDragan MaršićaninSucceeded byDragan Maršićanin Personal detailsBorn (1965-11-02) 2 November 1965 (age 58)Titovo Už...

The library's logo, originally a 1906 bookplate[1] The Navy Department Library is the official library of the United States Department of the Navy. Located at the Washington Navy Yard in Washington, D.C., it is a part of the Naval History and Heritage Command. History On March 31, 1800, President John Adams wrote to Secretary of the Navy Benjamin Stoddert directing him to establish a library of the best writing...on the theory and practice of naval architecture, navigation, gunnery, h...

 

Best Day EverEpisode SpongeBob SquarePantsKartu judul episodeNomor episodeMusim 4Episode 80aSutradaraNate Cash (papan cerita)Tuck Tucker (papan cerita)Vincent Waller (kreatif)Larry Leichliter (animasi)PenulisNate CashTuck TuckerSteven BanksTanggal siar10 November 2006Kronologi episode ← SebelumnyaSquid Wood Selanjutnya →The Gift of Gum Daftar episode SpongeBob SquarePants Best Day Ever (Indonesia: Hari Terbaik yang Pernah Adacode: id is deprecated ) adalah episode musim ke-...

 

SalmtalstadionInformazioni generaliStato Germania UbicazioneSalmaue, Salmtal Inaugurazione1981 Ristrutturazione1986-1987 Informazioni tecnichePosti a sedere12000 Strutturapianta ellittica Coperturatribuna centrale Pista d’atleticapresente Mat. del terrenoErba Dim. del terreno105 x 68 m Uso e beneficiariCalcio FSV Salmrohr Mappa di localizzazione Modifica dati su Wikidata · ManualeCoordinate: 49°55′40.8″N 6°50′20.69″E / 49.928°N 6.83908°E49.928; 6....

Questa voce sull'argomento architetti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Thomas Ustick Walter Thomas Ustick Walter (Filadelfia, 4 settembre 1804 – Filadelfia, 30 ottobre 1882) è stato un architetto statunitense di origini tedesche. Di scuola neoclassica, tra i suoi primi lavori merita di essere ricordato il progetto per il Girard College di Filadelfia, realizzato a partire dagli anni trenta dell'Ottocento. Lavorò anche al...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: 628th Air Base Wing – news · newspapers · books · scholar · JSTOR (October 2011) (Learn how and when to remove this message) This article needs additiona...

 

PararunganDesaPeta lokasi Desa PararunganNegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanHabinsaranKode pos22383Kode Kemendagri12.12.04.2024 Luas... km²Jumlah penduduk139 jiwa (2016)Kepadatan... jiwa/km² Pararungan adalah salah satu desa di Kecamatan Habinsaran, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Desa Pararungan merupakan pemekaran desa Panamparan pada tahun 2010. Pemerintahan Kepala Desa Pararungan pada tahun 2021 adalah Purbauli Panjaitan.[1] Desa...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

Guido VedovatoGuido Vedovato in his studioBorn (1961-06-30) June 30, 1961 (age 62)Vicenza, ItalyNationalityItalianKnown forPainting, Sculpture,MovementNaive art Guido Vedovato (30 June 1961 in Vicenza, Italy) Italian naïve painter and sculptor. Vedovato is one of the best-known Naïve artists. He was born in Vicenza, northern part of Italy. He lives and works in Camisano Vicentino. He graduated as an economist and had no artist scholar background. Yugoslavian Naïve art had a big e...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

ロリーナ・マッケニットLoreena McKennitt ロリーナ・マッケニット(2012年)基本情報出生名 Loreena Isabel Irene McKennitt生誕 1957年2月17日出身地 カナダ マニトバ州ジャンル ニューエイジ、ワールドミュージック、ケルト音楽職業 シンガーソングライター担当楽器 歌、ケルティック・ハープ、ピアノ、アコーディオン活動期間 1985年 -レーベル Quinlan Roadワーナー・ブラザース・レ...

 

Below is a list of members of the Order of the Companions of Honour from the order's creation in 1917 until the present day. Members   Blue denotes honorary members.   Yellow denotes living (ordinary) members.   Pink denotes royal companions. Date Portrait Name Birth–Death Area of achievement 4 June 1917 Jan Smuts 1870–1950 Statesman 4 June 1917 Harry Gosling 1861–1930 Politician and trade unionist 4 June 1917 The Marchioness of Lansdowne 1850–1932 Court...

 

This article is about the town and tehsil of Uttar Pradesh. For district in Haryana, see Charkhi Dadri. For other uses, see Dadri (disambiguation). Not to be confused with Dardi. Town in Uttar Pradesh, IndiaDadriTownDadriLocation in Uttar Pradesh, IndiaShow map of Uttar PradeshDadriDadri (India)Show map of IndiaCoordinates: 28°33′00″N 77°33′11″E / 28.550°N 77.553°E / 28.550; 77.553CountryIndiaStateUttar PradeshDistrictGautam Buddha Nagar DistrictElevation21...

German javelin thrower Andreas HofmannHofmann at Bislett Games, 2016Personal informationFull nameAndreas Emil HofmannBorn (1991-12-16) 16 December 1991 (age 32)Heidelberg, GermanyEducationSchiller International University, Heidelberg campusHeight1.95 m (6 ft 5 in)Weight108 kg (238 lb)WebsiteHofmannAndreas.deSportCountry GermanySportTrack and fieldEventJavelin throwClubMTG MannheimCoached byLutz KlemmAchievements and titlesPersonal best92.06 m (2018) Med...

 

XX secolo · XXI secolo · XXII secolo Anni 2000 · Anni 2010 · Anni 2020 · Anni 2030 · Anni 2040 2018 · 2019 · 2020 · 2021 · 2022 · 2023 · 2024 · 2025 · 2026 Il 2022 (MMXXII in numeri romani) è un anno del XXI secolo. 2022 negli altri calendariCalendario gregoriano2022 Ab Urbe condita2775 (MMDCCLXXV) Calendario armeno1470 — 1471 Calendario bengalese1428 — 1429 Calendario berbero2972 Calendario...