Reflexive relation

Transitive binary relations
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Total, Semiconnex Anti-
reflexive
Equivalence relation Green tickY Green tickY
Preorder (Quasiorder) Green tickY
Partial order Green tickY Green tickY
Total preorder Green tickY Green tickY
Total order Green tickY Green tickY Green tickY
Prewellordering Green tickY Green tickY Green tickY
Well-quasi-ordering Green tickY Green tickY
Well-ordering Green tickY Green tickY Green tickY Green tickY
Lattice Green tickY Green tickY Green tickY Green tickY
Join-semilattice Green tickY Green tickY Green tickY
Meet-semilattice Green tickY Green tickY Green tickY
Strict partial order Green tickY Green tickY Green tickY
Strict weak order Green tickY Green tickY Green tickY
Strict total order Green tickY Green tickY Green tickY Green tickY
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Definitions, for all and
Green tickY indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Green tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.

In mathematics, a binary relation on a set is reflexive if it relates every element of to itself.[1][2]

An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

Definitions

A relation on the set is said to be reflexive if for every , .

Equivalently, letting denote the identity relation on , the relation is reflexive if .

The reflexive closure of is the union which can equivalently be defined as the smallest (with respect to ) reflexive relation on that is a superset of A relation is reflexive if and only if it is equal to its reflexive closure.

The reflexive reduction or irreflexive kernel of is the smallest (with respect to ) relation on that has the same reflexive closure as It is equal to The reflexive reduction of can, in a sense, be seen as a construction that is the "opposite" of the reflexive closure of For example, the reflexive closure of the canonical strict inequality on the reals is the usual non-strict inequality whereas the reflexive reduction of is

There are several definitions related to the reflexive property. The relation is called:

irreflexive, anti-reflexive or aliorelative
[3] if it does not relate any element to itself; that is, if holds for no A relation is irreflexive if and only if its complement in is reflexive. An asymmetric relation is necessarily irreflexive. A transitive and irreflexive relation is necessarily asymmetric.
left quasi-reflexive
if whenever are such that then necessarily [4]
right quasi-reflexive
if whenever are such that then necessarily
quasi-reflexive
if every element that is part of some relation is related to itself. Explicitly, this means that whenever are such that then necessarily and Equivalently, a binary relation is quasi-reflexive if and only if it is both left quasi-reflexive and right quasi-reflexive. A relation is quasi-reflexive if and only if its symmetric closure is left (or right) quasi-reflexive.
antisymmetric
if whenever are such that then necessarily
coreflexive
if whenever are such that then necessarily [5] A relation is coreflexive if and only if its symmetric closure is anti-symmetric.

A reflexive relation on a nonempty set can neither be irreflexive, nor asymmetric ( is called asymmetric if implies not ), nor antitransitive ( is antitransitive if implies not ).

Examples

Examples of reflexive relations include:

  • "is equal to" (equality)
  • "is a subset of" (set inclusion)
  • "divides" (divisibility)
  • "is greater than or equal to"
  • "is less than or equal to"

Examples of irreflexive relations include:

  • "is not equal to"
  • "is coprime to" on the integers larger than 1
  • "is a proper subset of"
  • "is greater than"
  • "is less than"

An example of an irreflexive relation, which means that it does not relate any element to itself, is the "greater than" relation () on the real numbers. Not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (that is, neither all nor none are). For example, the binary relation "the product of and is even" is reflexive on the set of even numbers, irreflexive on the set of odd numbers, and neither reflexive nor irreflexive on the set of natural numbers.

An example of a quasi-reflexive relation is "has the same limit as" on the set of sequences of real numbers: not every sequence has a limit, and thus the relation is not reflexive, but if a sequence has the same limit as some sequence, then it has the same limit as itself. An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive.

An example of a coreflexive relation is the relation on integers in which each odd number is related to itself and there are no other relations. The equality relation is the only example of a both reflexive and coreflexive relation, and any coreflexive relation is a subset of the identity relation. The union of a coreflexive relation and a transitive relation on the same set is always transitive.

Number of reflexive relations

The number of reflexive relations on an -element set is [6]

Number of n-element binary relations of different types
Elem­ents Any Transitive Reflexive Symmetric Preorder Partial order Total preorder Total order Equivalence relation
0 1 1 1 1 1 1 1 1 1
1 2 2 1 2 1 1 1 1 1
2 16 13 4 8 4 3 3 2 2
3 512 171 64 64 29 19 13 6 5
4 65,536 3,994 4,096 1,024 355 219 75 24 15
n 2n2 2n(n−1) 2n(n+1)/2 n
k=0
k!S(n, k)
n! n
k=0
S(n, k)
OEIS A002416 A006905 A053763 A006125 A000798 A001035 A000670 A000142 A000110

Note that S(n, k) refers to Stirling numbers of the second kind.

Philosophical logic

Authors in philosophical logic often use different terminology. Reflexive relations in the mathematical sense are called totally reflexive in philosophical logic, and quasi-reflexive relations are called reflexive.[7][8]

Notes

  1. ^ Levy 1979, p. 74
  2. ^ Schmidt 2010
  3. ^ This term is due to C S Peirce; see Russell 1920, p. 32. Russell also introduces two equivalent terms to be contained in or imply diversity.
  4. ^ The Encyclopedia Britannica calls this property quasi-reflexivity.
  5. ^ Fonseca de Oliveira & Pereira Cunha Rodrigues 2004, p. 337
  6. ^ On-Line Encyclopedia of Integer Sequences A053763
  7. ^ Hausman, Kahane & Tidman 2013, pp. 327–328
  8. ^ Clarke & Behling 1998, p. 187

References

  • Clarke, D.S.; Behling, Richard (1998). Deductive Logic – An Introduction to Evaluation Techniques and Logical Theory. University Press of America. ISBN 0-7618-0922-8.
  • Fonseca de Oliveira, José Nuno; Pereira Cunha Rodrigues, César de Jesus (2004), "Transposing relations: from Maybe functions to hash tables", Mathematics of Program Construction, Springer: 334–356
  • Hausman, Alan; Kahane, Howard; Tidman, Paul (2013). Logic and Philosophy – A Modern Introduction. Wadsworth. ISBN 1-133-05000-X.
  • Levy, A. (1979), Basic Set Theory, Perspectives in Mathematical Logic, Dover, ISBN 0-486-42079-5
  • Lidl, R.; Pilz, G. (1998), Applied abstract algebra, Undergraduate Texts in Mathematics, Springer-Verlag, ISBN 0-387-98290-6
  • Quine, W. V. (1951), Mathematical Logic, Revised Edition, Reprinted 2003, Harvard University Press, ISBN 0-674-55451-5
  • Russell, Bertrand (1920). Introduction to Mathematical Philosophy (PDF) (2nd ed.). London: George Allen & Unwin, Ltd. (Online corrected edition, Feb 2010)
  • Schmidt, Gunther (2010), Relational Mathematics, Cambridge University Press, ISBN 978-0-521-76268-7

Read other articles:

Untuk other orang dengan nama yang sama, lihat Margaret Sullivan (disambiguasi). Margaret SullavanSullavan pada tahun 1940LahirMargaret Brooke Sullavan(1909-05-16)16 Mei 1909Norfolk, Virginia, ASMeninggal1 Januari 1960(1960-01-01) (umur 50)New Haven, Connecticut, ASSebab meninggalOverdosis barbituratMakamSaint Mary's Whitechapel Episcopal ChurchyardKebangsaanAmerika SerikatPendidikanChatham Episcopal InstitutePekerjaanAktrisTahun aktif1929–1960Suami/istriHenry Fonda ​&#...

Common feature of email, and IM; a collection of contacts or screen names This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Contact list – news · newspapers · books · scholar · JSTOR (July 2008) (Learn how and when to remove this template message) A contact list in Pidgin 2.0 A contact list is a collection of screen names. It i...

Заккарія Гізольфі   Народження: 15 століття Смерть: невідомо Мати: Bikhakhanimd Таманський півострів, карта 1870 року Заккарія Гізольфі (Zaccaria de Guizolfi, Zaccaria de Ghisolfi, Захарія Гуйгурсіс, Захарія Гуїл Гурсіс, у документах московського посольського наказу Князь Таманський Захарія) —

ЗарбеленZarbeling   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Дьєз Код INSEE 57759 Поштові індекси 57340 Координати 48°53′30″ пн. ш. 6°41′18″ сх. д.H G O Висота 235 - 325 м.н.р.м. Площа 3,87 км² Населення 66 (01-2020[1]) Густота 17,31 ос./км...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2018) ماريا كوفاتسو (باليونانية Μαρία Κουβάτσου) (باليونانية: Μαρία Κουβάτσου)‏  ماريا كوفاتسو في أولمبياد الشطرنج عام 2016 في باكو معلومات شخصية الميلاد 2 نوفمبر 1...

روفانو     الإحداثيات 39°59′00″N 18°15′00″E / 39.983333333333°N 18.25°E / 39.983333333333; 18.25  [1] تقسيم إداري  البلد إيطاليا[2]  التقسيم الأعلى مقاطعة لتشه  خصائص جغرافية  المساحة 39.73 كيلومتر مربع (9 أكتوبر 2011)[3]  ارتفاع 127 متر  عدد السكان  عدد السكان 9...

AwardLiège MedalLiège Medal(obverse)TypeUnofficial campaign medalAwarded for1914 defence of the city of LiègeCountry BelgiumEligibilityBelgian military personnelCampaign(s)World War IStatusNo longer awardedEstablishedApril 1920First awardedApril 1920Liège Medal(reverse) Lieutenant General Gérard Leman, heroic commander of the defence of Liège The Liège Medal (French: Médaille de Liège, Dutch: Medaille van Luik) was an unofficial World War I campaign medal issued by the Belgian c...

アバロンの初期配置 アバロン(Abalone)は、「玉による相撲」ともいえる内容の2人用のボードゲームである。二人零和有限確定完全情報ゲームに分類されるアブストラクトゲームである。 ルールは単純であり、通常2,3分で覚えることができる。また、チェスや将棋のような他のゲームに比べ展開が早く、1ゲームにかかる時間も少ない。 内容 ルール アバロンは、61の穴(

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapa...

إسقاط طائرة ميل-مي 17 العسكرية اليمنية صورة أرشيف لطائرة ميل مي-17 ملخص الحادث التاريخ 6 أغسطس 2013 نوع الحادث أطلاق نار الموقع صافر، محافظة مأرب الوفيات 11 (جميع الركاب والطاقم) النوع ميل مي-17 تعديل مصدري - تعديل   وقعت حادثة إسقاط طائرة ميل-مي 17 العسكرية اليمنية عندما تعرضت لإ�...

Indian yogi and author (born 1957) This article is about Sadhguru, an Indian spiritual teacher. For the definition of the word, see Satguru. SadhguruBornJagadish Vasudev (1957-09-03) 3 September 1957 (age 66)Mysore, Mysore State, IndiaAlma materUniversity of Mysore (BA)OrganizationIsha FoundationNotable workInner EngineeringDhyanalingaRally for RiversLinga BhairaviAdiyogi: The Source of YogaMystic's MusingsCauvery CallingSpouse Vijaya Kumari ​ ​(m. 1984;...

SafaruddinAnggota Dewan Perwakilan RakyatPetahanaMulai menjabat 1 Oktober 2019Daerah pemilihanKalimantan TimurKepala Kepolisian Daerah Kalimantan TimurMasa jabatan3 September 2015 – 5 Januari 2018PendahuluAndayonoPenggantiPriyo WidyantoWakil Kepala Badan Intelijen dan Keamanan PolriMasa jabatan22 Januari 2015 – 3 September 2015PendahuluDjoko Mukti HaryonoPenggantiDjoko PrastowoWakil Kepala Kepolisian Daerah Kalimantan BaratMasa jabatan8 Juni 2010 – 15 Febr...

American children's television show OobiGenre Puppetry Comedy Created byJosh SeligDeveloped byEssie Chambers[1]Written by Jenna Bradley Natascha Crandall Olga Humphrey Christine Nee Sascha Paladino Melinda Richards Directed by Pam Arciero Tim Lagasse Kevin Lombard Scott Preston Josh Selig Starring Tim Lagasse Stephanie D'Abruzzo Noel MacNeal Tyler Bunch ComposersSacred Noise, Inc.Country of originUnited StatesOriginal languageEnglishNo. of seasons3[a]No. of episodesShorts: 48L...

Sports Illustrated KidsThe first issue of Sports Illustrated for Kids, January 1, 1989, showing NBA Superstar Michael Jordan with friends Brad Pielet and Nancy Deller.Managing EditorBob DerStaff writersStaff Managing Editor SI.com: Paul Fichtenbaum Managing Editor: Bob DerCreative Director: Beth Power BuglerSenior Producer: Paul UlaneExecutive Marketing Director: Eileen MasioCategoriesSports magazineFrequencybi-monthlyCirculation950,000First issueJanuary 1, 1989 (1989-January-0...

В Википедии есть статьи о других людях с такой фамилией, см. Перелыгин. Евгений Юрьевич Перелыгинукр. Євген Юрійович Перелигін Чрезвычайный и Полномочный Посол Украины в Республике Сан-Марино 6 декабря 2013 — 15 июля 2020 Предшественник Георгий Чернявский Преемник Ярослав...

British writer and academic For other uses, see Simon Gray (disambiguation). Simon GrayCBE FRSLBornSimon James Holliday Gray(1936-10-21)21 October 1936Hayling Island, Hampshire, EnglandDied7 August 2008(2008-08-07) (aged 71)London, EnglandOccupationPlaywright, screenwriter, memoirist, novelistacademic (1965–1985)NationalityEnglishEducationWestminster SchoolAlma materDalhousie University (B.A., 1957) Trinity College, Cambridge (B.A., 1961)Period1963–2008GenreDrama, screenplay, me...

UAE-based satellite telecommunications company This article is about the satellite communications system. For the constellation, see Pleiades and Pleiades in folklore and literature. Thuraya Telecommunications CompanyTypeSubsidiaryIndustryMobile-satellite servicesFounded1997; 26 years ago (1997)HeadquartersUnited Arab EmiratesWebsitewww.thuraya.com Thuraya (Arabic: الثريا, Gulf Arabic pron.: [ɐθ.θʊˈrɑj.jɐ]; from the Arabic name for the constellation of t...

Residential skyscraper in Manhattan, New York The Orion(2008)General informationStatusCompletedTypeResidential[1]Location350 West 42nd StreetNew York City, New York, U.S.Coordinates40°45′30″N 73°59′33″W / 40.758361°N 73.992603°W / 40.758361; -73.992603Construction started2004[1]Opening2006[1]HeightAntenna spire604 ft (184 m)[1]Technical detailsFloor count58[1]Floor area632,939 sq ft (58,802.0 ...

Batalyon Kavaleri 5/Dwipangga CetaLambang Yonkav 5/Dwipangga CetaDibentuk9 Februari 1950CabangKavaleriTipe unitSatuan Bantuan TempurPeranPasukan Lapis BajaBagian dariKodam II/SriwijayaMarkasMuara Enim, Sumatera SelatanJulukanYonkav 5/DPCMotoJaya dimasa Perang Berguna dimasa DamaiBaretHitamMaskotGajah SumateraUlang tahun9 FebruariAlutsistaTank AMX-13 75mm, Tank AMX-13 105mm, Tank AMX-13 APC dan Panser Anoa Batalyon Kavaleri 5/Dwipangga Ceta atau Yon Kav 5/Serbu merupakan satuan bantuan tempur ...