Torus knot

A (3,−7)-3D torus knot.
EureleA Award showing a (2,3)-torus knot.
(2,8) torus link

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime (in which case the number of components is gcd(p, q)). A torus knot is trivial (equivalent to the unknot) if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

the (2,−3)-torus knot, also known as the left-handed trefoil knot

Geometrical representation

A torus knot can be rendered geometrically in multiple ways which are topologically equivalent (see Properties below) but geometrically distinct. The convention used in this article and its figures is the following.

The (p,q)-torus knot winds q times around a circle in the interior of the torus, and p times around its axis of rotational symmetry.[note 1]. If p and q are not relatively prime, then we have a torus link with more than one component.

The direction in which the strands of the knot wrap around the torus is also subject to differing conventions. The most common is to have the strands form a right-handed screw for p q > 0.[3][4][5]

The (p,q)-torus knot can be given by the parametrization

where and . This lies on the surface of the torus given by (in cylindrical coordinates).

Other parameterizations are also possible, because knots are defined up to continuous deformation. The illustrations for the (2,3)- and (3,8)-torus knots can be obtained by taking , and in the case of the (2,3)-torus knot by furthermore subtracting respectively and from the above parameterizations of x and y. The latter generalizes smoothly to any coprime p,q satisfying .

Properties

Diagram of a (3,−8)-torus knot.

A torus knot is trivial iff either p or q is equal to 1 or −1.[4][5]

Each nontrivial torus knot is prime[6] and chiral.[4]

The (p,q) torus knot is equivalent to the (q,p) torus knot.[3][5] This can be proved by moving the strands on the surface of the torus.[7] The (p,−q) torus knot is the obverse (mirror image) of the (p,q) torus knot.[5] The (−p,−q) torus knot is equivalent to the (p,q) torus knot except for the reversed orientation.

The (3, 4) torus knot on the unwrapped torus surface, and its braid word

Any (p,q)-torus knot can be made from a closed braid with p strands. The appropriate braid word is [8]

(This formula assumes the common convention that braid generators are right twists,[4][8][9][10] which is not followed by the Wikipedia page on braids.)

The crossing number of a (p,q) torus knot with p,q > 0 is given by

c = min((p−1)q, (q−1)p).

The genus of a torus knot with p,q > 0 is

The Alexander polynomial of a torus knot is [3][8]

where

The Jones polynomial of a (right-handed) torus knot is given by

The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold, fibred over the disc with two singular fibres.

Let Y be the p-fold dunce cap with a disk removed from the interior, Z be the q-fold dunce cap with a disk removed from its interior, and X be the quotient space obtained by identifying Y and Z along their boundary circle. The knot complement of the (p, q) -torus knot deformation retracts to the space X. Therefore, the knot group of a torus knot has the presentation

Torus knots are the only knots whose knot groups have nontrivial center (which is infinite cyclic, generated by the element in the presentation above).

The stretch factor of the (p,q) torus knot, as a curve in Euclidean space, is Ω(min(p,q)), so torus knots have unbounded stretch factors. Undergraduate researcher John Pardon won the 2012 Morgan Prize for his research proving this result, which solved a problem originally posed by Mikhail Gromov.[11][12]

Connection to complex hypersurfaces

The (p,q)−torus knots arise when considering the link of an isolated complex hypersurface singularity. One intersects the complex hypersurface with a hypersphere, centred at the isolated singular point, and with sufficiently small radius so that it does not enclose, nor encounter, any other singular points. The intersection gives a submanifold of the hypersphere.

Let p and q be coprime integers, greater than or equal to two. Consider the holomorphic function given by Let be the set of such that Given a real number we define the real three-sphere as given by The function has an isolated critical point at since if and only if Thus, we consider the structure of close to In order to do this, we consider the intersection This intersection is the so-called link of the singularity The link of , where p and q are coprime, and both greater than or equal to two, is exactly the (p,q)−torus knot.[13]

List

(72,4) torus link
Table
#
A-B Image P Q Cross
#
0 01 0
3a1 31 2 3 3
5a2 51 2 5 5
7a7 71 2 7 7
8n3 819 3 4 8
9a41 91 2 9 9
10n21 10124 3 5 10
11a367 2 11 11
13a4878 2 13 13
14n21881 3 7 14
15n41185 4 5 15
15a85263 2 15 15
16n783154 3 8 16
2 17 17
2 19 19
3 10 20
4 7 21
2 21 21
3 11 22
2 23 23
5 6 24
2 25 25
3 13 26
4 9 27
2 27 27
5 7 28
3 14 28
2 29 29
2 31 31
5 8 32
3 16 32
4 11 33
2 33 33
3 17 34
6 7 35
2 35 35
5 9 36
7 8 48
7 9 54
8 9 63

g-torus knot

A g-torus knot is a closed curve drawn on a g-torus. More technically, it is the homeomorphic image of a circle in which can be realized as a subset of a genus g handlebody in (whose complement is also a genus g handlebody). If a link is a subset of a genus two handlebody, it is a double torus link.[14]

For genus two, the simplest example of a double torus knot that is not a torus knot is the figure-eight knot.[15][16]

Notes

  1. ^ Note that this use of the roles of p and q is contrary to what appears on.[1] It is also inconsistent with the pictures that appear in: [2]

See also

References

  1. ^ Torus Knot on Wolfram Mathworld [1].
  2. ^ "36 Torus Knots", The Knot Atlas. [2].
  3. ^ a b c Livingston, Charles (1993). Knot Theory. Mathematical Association of America. p. [page needed]. ISBN 0-88385-027-3.
  4. ^ a b c d Murasugi, Kunio (1996). Knot Theory and its Applications. Birkhäuser. p. [page needed]. ISBN 3-7643-3817-2.
  5. ^ a b c d Kawauchi, Akio (1996). A Survey of Knot Theory. Birkhäuser. p. [page needed]. ISBN 3-7643-5124-1.
  6. ^ Norwood, F. H. (1982-01-01). "Every two-generator knot is prime". Proceedings of the American Mathematical Society. 86 (1): 143–147. doi:10.1090/S0002-9939-1982-0663884-7. ISSN 0002-9939. JSTOR 2044414.
  7. ^ Baker, Kenneth (2011-03-28). "p q is q p". Sketches of Topology. Retrieved 2020-11-09.
  8. ^ a b c Lickorish, W. B. R. (1997). An Introduction to Knot Theory. Springer. p. [page needed]. ISBN 0-387-98254-X.
  9. ^ Dehornoy, P.; Dynnikov, Ivan; Rolfsen, Dale; Wiest, Bert (2000). Why are Braids Orderable? (PDF). p. [page needed]. Archived from the original (PDF) on 2012-04-15. Retrieved 2011-11-12.
  10. ^ Birman, J. S.; Brendle, T. E. (2005). "Braids: a Survey". In Menasco, W.; Thistlethwaite, M. (eds.). Handbook of Knot Theory. Elsevier. p. [page needed]. ISBN 0-444-51452-X.
  11. ^ Kehoe, Elaine (April 2012), "2012 Morgan Prize", Notices of the American Mathematical Society, vol. 59, no. 4, pp. 569–571, doi:10.1090/noti825.
  12. ^ Pardon, John (2011), "On the distortion of knots on embedded surfaces", Annals of Mathematics, Second Series, 174 (1): 637–646, arXiv:1010.1972, doi:10.4007/annals.2011.174.1.21, MR 2811613, S2CID 55567836
  13. ^ Milnor, J. (1968). Singular Points of Complex Hypersurfaces. Princeton University Press. p. [page needed]. ISBN 0-691-08065-8.
  14. ^ Rolfsen, Dale (1976). Knots and Links. Publish or Perish, Inc. p. [page needed]. ISBN 0-914098-16-0.
  15. ^ Hill, Peter (December 1999). "On Double-Torus Knots (I)". Journal of Knot Theory and Its Ramifications. 08 (8): 1009–1048. doi:10.1142/S0218216599000651. ISSN 0218-2165.
  16. ^ Norwood, Frederick (November 1989). "Curves on surfaces". Topology and Its Applications. 33 (3): 241–246. doi:10.1016/0166-8641(89)90105-3.

Read other articles:

مارسيلو باروفيرو   معلومات شخصية الميلاد 18 فبراير 1984 (العمر 40 سنة) الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب حارس مرمى الجنسية الأرجنتين  معلومات النادي النادي الحالي أتليتكو سان لويس الرقم 1 المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2003–2007 أتليتيكو رافائيلا 117 (0) 2...

 

 

Nicolas-Claude Fabri de Peiresc. Nicolas-Claude Fabri de Peiresc (1 Desember 1580 – 24 Juni 1637) adalah seorang astronom Prancis. Penelitiannya meliputi penentuan perbedaan garis bujur dari berbagai lokasi di Eropa, sekitar Laut Tengah dan Afrika Utara. Ia menemukan Nebula Orion pada tahun 1610. Pranala luar de Peiresc biography and references Galileo Project at Rice University Life of the great Provençal humanist Diarsipkan 2005-12-12 di Wayback Machine. Project Peiresc by Prof RA Hatch ...

 

 

Census-designated place in Virginia, US Downtown Saluda, with the courthouse on the right Saluda is a census-designated place (CDP) in and the county seat of Middlesex County, Virginia, United States.[1] The population as of the 2010 Census was 769.[2] The Middlesex County Courthouse was built between 1850 and 1874 by architects William R. Jones and John P. Hill, and is listed in the National Register of Historic Places.[3] A new courthouse complex was built in the 200...

See also: 2020 United States secretary of state elections 2020 Oregon Secretary of State election ← 2016 November 3, 2020 2024 →   Nominee Shemia Fagan Kim Thatcher Party Democratic Republican Popular vote 1,146,370 984,587 Percentage 50.3% 43.2% County results Precinct resultsFagan:      40–50%      50–60%      60–70%      70–80%     ...

 

 

Convoy system used by the Spanish Empire from 1566 to 1790 Spanish galleon routes (white): West Indies or trans-atlantic route begun in 1492, Manila galleon or trans-pacific route begun in 1565 (Blue: Portuguese routes, operational from 1498 to 1640). The Spanish treasure fleet, or West Indies Fleet (Spanish: Flota de Indias, also called silver fleet or plate fleet; from the Spanish: plata meaning silver), was a convoy system of sea routes organized by the Spanish Empire from 1566 to 1790, wh...

 

 

The WR-21 powers Royal Navy Type 45 destroyers. The Rolls-Royce WR-21 is a gas turbine marine engine, designed with a view to powering the latest naval surface combatants of the partner nations. History Developed with government funding input from the United Kingdom, France and the United States, the WR-21 was designed and manufactured by an international consortium led by Northrop Grumman as prime contractor.[1] The turbine itself was designed primarily by Rolls-Royce with significan...

African-American activist (1797–1883) Sojourner TruthTruth, c. 1870BornIsabella Baumfreec. 1797Swartekill, New York, U.S.DiedNovember 26, 1883 (aged 86)Battle Creek, Michigan, U.S.Occupation(s)Abolitionist, human rights activistParent(s)James Baumfree Elizabeth Baumfree Sojourner Truth (/soʊˈdʒɜːrnər, ˈsoʊdʒɜːrnər/;[1] born Isabella Baumfree; c. 1797 – November 26, 1883) was an American abolitionist and activist for African-American ...

 

 

EzanàMoneta di re Ezanà di Axum ritrovata in Etiopia, IV secoloRe di AxumPredecessoreOusanas SuccessoreMehadeyis Nascita325 Morte356 PadreOusanas MadreSofya Ezanà di Axum (conosciuto anche come Æzana, in lingua ge'ez ዔዛና , ‘Ēzānā, non vocalizzato ዐዘነ, ‘Zn; 325[1] – 356[1]) fu un Re di Axum. Indice 1 Biografia 2 Note 3 Bibliografia 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Biografia Governò il regno di Axum, situato negli odierni E...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

United States federal agency that provides power supply to the Pacific Northwest Bonneville Power AdministrationAgency overviewFormedAugust 20, 1937; 86 years ago (1937-08-20)JurisdictionU.S. governmentHeadquartersPortland, Oregon, U.S.Agency executiveJohn Hairston, administratorParent agency U.S. Department of EnergyWebsitewww.bpa.gov ▬ BPA Transmission Line Federal Dam • • • Non-BPA Line █ BPA Service Area Logo used to commemorate 75 years of the Bonn...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

Italiens försvarsmakt InformationNation ItalienOrganisationer Armén Marinen Flygvapnet KarabinjärernaHögste befälhavarePresident Sergio MattarellaStatsrådFörsvarsminister Lorenzo GueriniFörsvarschefGeneral Enzo VecciarelliVapenför ålder18 årMilitärtjänstNej, frivilligStående styrkor171 000 aktiva soldater plus 110 000 karabinjärerEkonomiBudget€21,4 miljarderÖvrigt Italiens försvarsmakt (italienska: Forze armate italiane) består av vapenslagen armén, marinen...

2018 American filmHale County This Morning, This EveningFilm posterDirected byRaMell RossWritten byRaMell Ross Maya KrinskyProduced byRaMell Ross Joslyn Barnes Su KimStarringLatrenda Boosie Ash Quincy Bryant Daniel Collins[1]Edited byRaMell Ross Joslyn Barnes Maya Krinsky Robb MossMusic byScott Alario Forest Kelley Alex SomersDistributed byThe Cinema GuildRelease date January 19, 2018 (2018-01-19) (Sundance Film Festival) Running time76 minutes [2]CountryUni...

 

 

Tutti pazzi per MaryMary Jensen (Cameron Diaz) e Ted Stroehmann (Ben Stiller) nella scena finale della pellicolaTitolo originaleThere's Something About Mary Paese di produzioneStati Uniti d'America Anno1998 Durata119 min Generecommedia, sentimentale RegiaPeter e Bobby Farrelly SoggettoEd Decter, John J. Strauss SceneggiaturaEd Decter, John J. Strauss, Peter e Bobby Farrelly ProduttoreFrank Beddor, Michael Steinberg, Bradley Thomas, Charles B. Wessler Produttore esecutivoPeter e Bobby Farr...

 

 

County in North Dakota, United States County in North DakotaFoster CountyCountyFoster County Courthouse in Carrington, North Dakota.Location within the U.S. state of North DakotaNorth Dakota's location within the U.S.Coordinates: 47°28′N 98°53′W / 47.46°N 98.89°W / 47.46; -98.89Country United StatesState North DakotaFoundedJanuary 4, 1873 (created)October 11, 1883 (organized)SeatCarringtonLargest cityCarringtonArea • Total647 sq ...

Premier ministre de MauricePrime Minister of Mauritius Armoiries de Maurice Titulaire actuelPravind Jugnauthdepuis le 23 janvier 2017 Création 12 avril 1968 Mandant Président de la république de Maurice Premier titulaire Sir Seewoosagur Ramgoolam Résidence officielle Clarisse House Site internet pmo.govmu.org modifier  Le Premier ministre de Maurice est le chef du gouvernement de la république de Maurice. Historique Le 26 septembre 1961, l'île Maurice, alors colonie britannique, a...

 

 

Mass Rapid Transit line in Singapore Thomson–East Coast LinePlatforms of Bayshore MRT station, the current eastern terminus of the lineOverviewNative nameMalay: Laluan MRT Thomson-Pantai TimurChinese: 汤申-东海岸地铁线Tamil: தாம்சன் - ஈஸ்ட் கோஸ்ட் எம்ஆர்டி வழிStatusOperational (Stages 1–4)Under construction (Stage 5)Under planning (extension to Changi Airport)OwnerLand Transport AuthorityLocaleSingaporeTerminiWoodlands ...

 

 

Tibor Pézsa Medallista olímpico Tibor Pézsa (1967)Datos personalesNacimiento Esztergom, Hungría15 de noviembre de 1935 (88 años)Carrera deportivaRepresentante de Hungría HungríaDeporte Esgrima               Medallero Esgrima masculina Evento O P B Juegos Olímpicos 1 0 3 Campeonato Mundial 2 5 2 [editar datos en Wikidata] Tibor Pézsa (Esztergom, 15 de noviembre de 1935) es un deportista húngaro ...

Roland BertinLahir(1930-11-16)16 November 1930Paris, PrancisMeninggal19 Februari 2024(2024-02-19) (umur 93)Pont-l'Abbé, PrancisPekerjaanAktorTahun aktif1970–2024 Penghargaan Knight of the Legion of Honour (en) Knight of the National Order of Merit (en) Commandeur des Arts et des Lettres‎ (en) Roland Bertin (16 November 1930 – 19 Februari 2024) adalah seorang pemeran film dan panggung asal Prancis.[1] Dia muncul di setidaknya 100 film dan acara televisi ...

 

 

Mayor of South Bend, Indiana Mayoralty of Pete ButtigiegJanuary 1, 2012 – January 1, 2020MayorPete ButtigiegPartyDemocraticElection20112015← Steve LueckeJames Mueller → Road sign welcoming travelers to South Bend, advertising Buttigieg as mayor This article is part of a series aboutPete Buttigieg Political positions Electoral history Mayor of South Bend, Indiana Tenure Elections 2011 2015 New city flag Proposal for new train station 2020 presidential campaign ...