Khovanov homology

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

It was developed in the late 1990s by Mikhail Khovanov.

Overview

To any link diagram D representing a link L, we assign the Khovanov bracket [D], a cochain complex of graded vector spaces. This is the analogue of the Kauffman bracket in the construction of the Jones polynomial. Next, we normalise [D] by a series of degree shifts (in the graded vector spaces) and height shifts (in the cochain complex) to obtain a new cochain complex C(D). The cohomology of this cochain complex turns out to be an invariant of L, and its graded Euler characteristic is the Jones polynomial of L.

Definition

This definition follows the formalism given in Dror Bar-Natan's 2002 paper.

Let {l} denote the degree shift operation on graded vector spaces—that is, the homogeneous component in dimension m is shifted up to dimension m + l.

Similarly, let [s] denote the height shift operation on cochain complexes—that is, the rth vector space or module in the complex is shifted along to the (r + s)th place, with all the differential maps being shifted accordingly.

Let V be a graded vector space with one generator q of degree 1, and one generator q−1 of degree −1.

Now take an arbitrary diagram D representing a link L. The axioms for the Khovanov bracket are as follows:

  1. [ø] = 0 → Z → 0, where ø denotes the empty link.
  2. [O D] = V[D], where O denotes an unlinked trivial component.
  3. [D] = F(0 → [D0][D1]{1} → 0)

In the third of these, F denotes the `flattening' operation, where a single complex is formed from a double complex by taking direct sums along the diagonals. Also, D0 denotes the `0-smoothing' of a chosen crossing in D, and D1 denotes the `1-smoothing', analogously to the skein relation for the Kauffman bracket.

Next, we construct the `normalised' complex C(D) = [D][−n]{n+ − 2n}, where n denotes the number of left-handed crossings in the chosen diagram for D, and n+ the number of right-handed crossings.

The Khovanov homology of L is then defined as the cohomology H(L) of this complex C(D). It turns out that the Khovanov homology is indeed an invariant of L, and does not depend on the choice of diagram. The graded Euler characteristic of H(L) turns out to be the Jones polynomial of L. However, H(L) has been shown to contain more information about L than the Jones polynomial, but the exact details are not yet fully understood.

In 2006 Dror Bar-Natan developed a computer program to calculate the Khovanov homology (or category) for any knot.[1]

One of the most interesting aspects of Khovanov's homology is that its exact sequences are formally similar to those arising in the Floer homology of 3-manifolds. Moreover, it has been used to produce another proof of a result first demonstrated using gauge theory and its cousins: Jacob Rasmussen's new proof of a theorem of Peter Kronheimer and Tomasz Mrowka, formerly known as the Milnor conjecture (see below). There is a spectral sequence relating Khovanov homology with the knot Floer homology of Peter Ozsváth and Zoltán Szabó (Dowlin 2018).[2] This spectral sequence settled an earlier conjecture on the relationship between the two theories (Dunfield et al. 2005). Another spectral sequence (Ozsváth-Szabó 2005) relates a variant of Khovanov homology with the Heegaard Floer homology of the branched double cover along a knot. A third (Bloom 2009) converges to a variant of the monopole Floer homology of the branched double cover. In 2010 Kronheimer and Mrowka [3] exhibited a spectral sequence abutting to their instanton knot Floer homology group and used this to show that Khovanov Homology (like the instanton knot Floer homology) detects the unknot.

Khovanov homology is related to the representation theory of the Lie algebra . Mikhail Khovanov and Lev Rozansky have since defined homology theories associated to for all . In 2003, Catharina Stroppel extended Khovanov homology to an invariant of tangles (a categorified version of Reshetikhin-Turaev invariants) which also generalizes to for all . Paul Seidel and Ivan Smith have constructed a singly graded knot homology theory using Lagrangian intersection Floer homology, which they conjecture to be isomorphic to a singly graded version of Khovanov homology. Ciprian Manolescu has since simplified their construction and shown how to recover the Jones polynomial from the cochain complex underlying his version of the Seidel-Smith invariant.

At International Congress of Mathematicians in 2006 Mikhail Khovanov provided the following explanation for the relation to knot polynomials from the view point of Khovanov homology. The skein relation for three links and is described as

Substituting leads to a link polynomial invariant , normalized so that

For the polynomial can be interpreted via the representation theory of quantum group and via that of the quantum Lie superalgebra .

  • The Alexander polynomial is the Euler characteristic of a bigraded knot homology theory.
  • is trivial.
  • The Jones polynomial is the Euler characteristic of a bigraded link homology theory.
  • The entire HOMFLY-PT polynomial is the Euler characteristic of a triply graded link homology theory.

Applications

The first application of Khovanov homology was provided by Jacob Rasmussen, who defined the s-invariant using Khovanov homology. This integer valued invariant of a knot gives a bound on the slice genus, and is sufficient to prove the Milnor conjecture.

In 2010, Kronheimer and Mrowka proved that the Khovanov homology detects the unknot. The categorified theory has more information than the non-categorified theory. Although the Khovanov homology detects the unknot, it is not yet known if the Jones polynomial does.

Notes

  1. ^ New Scientist 18 Oct 2008
  2. ^ Dowlin, Nathan (2018-11-19). "A spectral sequence from Khovanov homology to knot Floer homology". arXiv:1811.07848 [math.GT].
  3. ^ Kronheimer, Peter B.; Mrowka, Tomasz (2011). "Khovanov homology is an unknot-detector". Publ. Math. Inst. Hautes Études Sci. 113: 97–208. arXiv:1005.4346. doi:10.1007/s10240-010-0030-y. S2CID 119586228.

References

Read other articles:

Form of punishment Part of a series onCorporal punishment By place Domestic Judicial School By implementation Amputation Belting Birching Branding Caning Cat o' nine tails Flagellation Foot whipping Knout Paddle Scourge Sjambok Slippering Spanking Strapping Switch Tawse Riding crop Whip By country Afghanistan Brunei Iran Malaysia Qatar Singapore Taiwan United Arab Emirates United States Court cases CFCYL v. Canada Ingraham v. Wright S v Williams Tyrer v. the United Kingdom Politics Campaigns ...

Герб Кучургана ДеталіНосій КучурганЩит Іспанський Герб Кучургана — офіційний символ Кучургана Роздільнянського району Одеської області. Опис Емблема, що складається з двох рівновеликих вертикальних смуг жовтого та сталевого кольорів, об'єднаних червоною смугою та...

Sesi istirahat selama konser babak pertama pada International Frédéric Chopin Piano Competition ke 15, Oktober 2005, Warsawa, Polandia. International Frédéric Chopin Piano Competition adalah sebuah kompetisi musik piano yang diselenggarakan di Warsawa sejak tahun 1927 dan diselenggarakan setiap lima tahun sekali sejak tahun 1955.[1] Kompetisi ini didirikan oleh Jerzy Żurawlew - seorang pianis Polandia, dan diberi nama menurut nama komposer Frédéric Chopin. Daftar Juara Tabel me...

Glacial lake in Sac County, IowaBlack Hawk LakeView of the lake from Lakeside Park in Lake View, IowaBlack Hawk LakeShow map of IowaBlack Hawk LakeShow map of the United StatesUnited States Environmental Protection Agency mapLocationSac County, IowaCoordinates42°18′01″N 095°00′22″W / 42.30028°N 95.00611°W / 42.30028; -95.00611TypeGlacial lakePrimary inflowsDitch No. 60Primary outflowsDitch No. 57, to Indian CreekCatchment areaNorth Raccoon RiverBasin c...

American collegiate honor society Skull & KeysFounded1892University of California, BerkeleyTypeSenior honor societyScopeLocalChapters1HeadquartersBerkeley, California United States Skull & Keys initation Running, circa 1899 Skull & Keys initiation, Night, circa 1899 Advertisement for the Running, 1938 Skull & Keys was a men's honor society at the University of California, Berkeley in Berkeley, California.[1][2][3][4] The organization was started...

Wakil Bupati BangliBhukti mukti bhakti(Sanskerta) Pengabdian dengan berbakti kepada Tuhan dan tanah air demi tujuan masyarakat adil dan makmur secara lahir (bhukti) maupun batin (mukti)PetahanaI Wayan Diar, S.ST. Par.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk2000Pejabat pertamaI Made GianyarSitus webbanglikab.go.id Berikut ini adalah daftar Wakil Bupati Bangli dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 I Made GianyarS.H., M.Hum. 2000 2005 1 &...

2021 video game 2021 video gameMetroid DreadDigital artDeveloper(s)MercurySteamNintendo EPDPublisher(s)NintendoDirector(s)Jose Luis MárquezFumi HayashiProducer(s)Yoshio SakamotoDesigner(s)Jose Maria Navarro HerreraCarlos Zarzuela SánchezJacobo LuengoProgrammer(s)Fernando ZazoArtist(s)Jorge Benedito ChicharroComposer(s)Soshi AbeSayako DoiSeriesMetroidPlatform(s)Nintendo SwitchReleaseOctober 8, 2021Genre(s)Action-adventure, metroidvaniaMode(s)Single-player Metroid Dread[a] is an actio...

South Korean para table tennis player Seo Su-yeonSeo before the 2016 Summer ParalympicsPersonal informationBorn (1986-01-08) January 8, 1986 (age 37)Mokpo,[1] South Jeolla, South KoreaHeight174 cm (5 ft 9 in)[1]Weight60 kg (132 lb)[2]Table tennis career Playing styleRight-handed shakehand gripDisability class2 (formerly 3)Highest ranking1 (November 2015)[3]Current ranking3 (February 2020) Medal record Women's pa...

Bangladeshi actor and radio personality Md. Shahadat HossainHossain presenting a cultural program in 2021Born (1976-11-09) 9 November 1976 (age 47)Barisal, BangladeshNationalityBangladeshiOccupation(s)Actor, radio personality Md. Shahadat Hossain (born 9 November 1976)[1] is a Bangladeshi actor and radio personality who acted in stage, television and films. He won National Film Award 2017 in Best Supporting Actor category for Gohin Baluchor.[2][3][4] Early...

  هذه المقالة عن مركب كيميائي. لكربون، طالع كربون (توضيح). كربونات Ball-and-stick model of the carbonate anion الاسم النظامي (IUPAC) Carbonate تسمية الاتحاد الدولي للكيمياء Trioxidocarbonate[1]:127 المعرفات رقم CAS 3812-32-6 بوب كيم (PubChem) 19660 مواصفات الإدخال النصي المبسط للجزيئات C(=O)([O-])[O-] المعرف الكيميائي ال�...

1986 American coming-of-age film directed by Rob Reiner This article is about the 1986 American film. For the 2014 Japanese film, see Stand by Me Doraemon. Stand by MeTheatrical release posterDirected byRob ReinerScreenplay by Bruce A. Evans Raynold Gideon Based onThe Bodyby Stephen KingProduced by Bruce A. Evans Raynold Gideon Andrew Scheinman Starring Wil Wheaton River Phoenix Corey Feldman Jerry O'Connell Kiefer Sutherland CinematographyThomas Del RuthEdited byRobert LeightonMusic byJack N...

Ancient Egyptian hermit A chapel at the Serapeum of Saqqara, like the one wherein Ptolemaeus lived in katoche for 20 years Ptolemaeus son of Glaucias (Ancient Greek: Πτολεμαῖος Γλαυκίου Μακεδών, romanized: Ptolemaios Glaukiou Makedon,[1] fl. 2nd century BC)[2] was a katochos (an unclear word roughly translatable as hermit) who lived in the Temple of Astarte in the Serapeum at Memphis, Egypt for 20 years. Many details about his life and associates...

1998 single by the MisfitsI Wanna Be a NY RangerSingle by the MisfitsReleasedAugust 1998RecordedMay 1998GenreHorror punkLength1:38LabelNon-Homogenized Productions Ltd.Songwriter(s)John CafieroProducer(s)John CafieroMisfits singles chronology Dig Up Her Bones (1997) I Wanna Be a NY Ranger (1998) Scream! (1999) Audio sampleThe marketing department of the New York Rangers objected to the use of the word danger in the song's lyrics.filehelp I Wanna Be a NY Ranger is the eighth single by Ameri...

この存命人物の記事には検証可能な出典が不足しています。信頼できる情報源の提供に協力をお願いします。存命人物に関する出典の無い、もしくは不完全な情報に基づいた論争の材料、特に潜在的に中傷・誹謗・名誉毀損あるいは有害となるものはすぐに除去する必要があります。出典検索?: エクトル・ルナ – ニュース · 書籍 · スカラー · CiN...

The Kirial Hoard. The Kirial Hoard (Danish: Kirialfundet or Kirialskatten), found near Kirial, Djursland, is the largest treasure trove ever found in Denmark. It consists of 81,422 silver coins buried in two iron pots and dates from around 1365. Most of the hoard is now on display in the National Museum of Denmark. A minor share of the coins is on display in the local Djursland Museum in Grenå. Discovery The Kirial Hoard was discovered in November 1867 when a local farmer was ploughing his f...

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (червень 2021) Контрольна кімната студії з пультом мікшера і моніторами. Студі...

One of the twelve Tribes of Israel Tribes of Israel The Tribes of Israel Reuben Simeon Levi Judah Dan Naphtali Gad Asher Issachar Zebulun Joseph Manasseh Ephraim Benjamin Other tribes Caleb Keni Rechab Jerahmeel Related topics Leaders Israelites Ten Lost Tribes Jews Samaritans vte Territory of Gad on an 1852 map According to the Bible, the Tribe of Gad (Hebrew: גָּד‎, Modern: Gad, Tiberian: Gāḏ, soldier or luck) was one of the Twelve Tribes of Israel who, after the Exod...

For other uses, see Omana (disambiguation). This article is about the Indian film. For the Indian translator, see Omana Gopalakrishnan. For the comarca in Spain, see Omaña. 1972 Indian filmOmanaDirected byJ. D. ThottanWritten byParappurathScreenplay byParappurathuProduced byJ. D. ThottanStarringRavichandranPrem NazirSheelaRani ChandraCinematographyP. DathuEdited byV. P. KrishnanMusic byG. DevarajanProductioncompanyThottan PicturesDistributed byThottan PicturesRelease date 28 April ...

House elections for the 58th U.S. Congress 1902 United States House of Representatives elections ← 1900 June 2, September 12, September 18, and November 4, 1902[a] 1904 → All 386 seats in the United States House of Representatives194 seats needed for a majority   Majority party Minority party   Leader Joseph Cannon John Sharp Williams Party Republican Democratic Leader since March 4, 1903 March 4, 1903 Leader's seat Illinois 18th Mississi...

Parts of this article (those related to fuel mileage scandals) need to be updated. Please help update this article to reflect recent events or newly available information. (April 2016) Motor vehicle Mitsubishi eK2004 Mitsubishi eK WagonOverviewManufacturerMitsubishi Motors (2001–2013)NMKV (2013–present)Also calledMitsubishi eK:Nissan Otti (2005–2013)Nissan Dayz (2013–present)Mitsubishi eK Space:Nissan Dayz Roox (2014–2020)Nissan Roox (2020–present)ProductionOctober 2001 – p...