Geometric graph theory

Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013). Geometric graphs are also known as spatial networks.

Different types of geometric graphs

A planar straight-line graph is a graph in which the vertices are embedded as points in the Euclidean plane, and the edges are embedded as non-crossing line segments. Fáry's theorem states that any planar graph may be represented as a planar straight line graph. A triangulation is a planar straight line graph to which no more edges may be added, so called because every face is necessarily a triangle; a special case of this is the Delaunay triangulation, a graph defined from a set of points in the plane by connecting two points with an edge whenever there exists a circle containing only those two points.

The 1-skeleton of a polyhedron or polytope is the set of vertices and edges of said polyhedron or polytope. The skeleton of any convex polyhedron is a planar graph, and the skeleton of any k-dimensional convex polytope is a k-connected graph. Conversely, Steinitz's theorem states that any 3-connected planar graph is the skeleton of a convex polyhedron; for this reason, this class of graphs is also known as the polyhedral graphs.

A Euclidean graph is a graph in which the vertices represent points in the plane, and each edge is assigned the length equal to the Euclidean distance between its endpoints. The Euclidean minimum spanning tree is the minimum spanning tree of a Euclidean complete graph. It is also possible to define graphs by conditions on the distances; in particular, a unit distance graph is formed by connecting pairs of points that are a unit distance apart in the plane. The Hadwiger–Nelson problem concerns the chromatic number of these graphs.

An intersection graph is a graph in which each vertex is associated with a set and in which vertices are connected by edges whenever the corresponding sets have a nonempty intersection. When the sets are geometric objects, the result is a geometric graph. For instance, the intersection graph of line segments in one dimension is an interval graph; the intersection graph of unit disks in the plane is a unit disk graph. The Circle packing theorem states that the intersection graphs of non-crossing circles are exactly the planar graphs. Scheinerman's conjecture (proven in 2009) states that every planar graph can be represented as the intersection graph of line segments in the plane.

A Levi graph of a family of points and lines has a vertex for each of these objects and an edge for every incident point-line pair. The Levi graphs of projective configurations lead to many important symmetric graphs and cages.

The visibility graph of a closed polygon connects each pair of vertices by an edge whenever the line segment connecting the vertices lies entirely in the polygon. It is not known how to test efficiently whether an undirected graph can be represented as a visibility graph.

A partial cube is a graph for which the vertices can be associated with the vertices of a hypercube, in such a way that distance in the graph equals Hamming distance between the corresponding hypercube vertices. Many important families of combinatorial structures, such as the acyclic orientations of a graph or the adjacencies between regions in a hyperplane arrangement, can be represented as partial cube graphs. An important special case of a partial cube is the skeleton of the permutohedron, a graph in which vertices represent permutations of a set of ordered objects and edges represent swaps of objects adjacent in the order. Several other important classes of graphs including median graphs have related definitions involving metric embeddings (Bandelt & Chepoi 2008).

A flip graph is a graph formed from the triangulations of a point set, in which each vertex represents a triangulation and two triangulations are connected by an edge if they differ by the replacement of one edge for another. It is also possible to define related flip graphs for partitions into quadrilaterals or pseudotriangles, and for higher-dimensional triangulations. The flip graph of triangulations of a convex polygon forms the skeleton of the associahedron or Stasheff polytope. The flip graph of the regular triangulations of a point set (projections of higher-dimensional convex hulls) can also be represented as a skeleton, of the so-called secondary polytope.

See also

References

  • Bandelt, Hans-Jürgen; Chepoi, Victor (2008). "Metric graph theory and geometry: a survey" (PDF). Surveys on Discrete and Computational Geometry - Twenty Years Later. Contemporary Mathematics. Vol. 453. American Mathematical Society. pp. 49–86.
  • Pach, János, ed. (2004). Towards a Theory of Geometric Graphs. Contemporary Mathematics. Vol. 342. American Mathematical Society.
  • Pach, János (2013). "The beginnings of geometric graph theory". Erdös centennial. Bolyai Soc. Math. Stud. Vol. 25. Budapest: János Bolyai Math. Soc. pp. 465–484. doi:10.1007/978-3-642-39286-3_17. MR 3203608.
  • Pisanski, Tomaž; Randić, Milan (2000). "Bridges between geometry and graph theory". In Gorini, C. A. (ed.). Geometry at Work: Papers in Applied Geometry. Washington, DC: Mathematical Association of America. pp. 174–194. Archived from the original on 2007-09-27.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pemain Terbaik Dunia FIFA 1997 – berita · surat kabar · buku · cendekiawan · JSTOR Pemain Terbaik Dunia FIFA 1997 adalah penghargaan yang dimenangkan oleh Ronaldo, pemain pertama yang memenangkan penghar...

 

Hikmah di Balik KisahGenreReligiNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiLokasi produksiThe East Building, Mega Kuningan, Kuningan Timur, Setiabudi, Jakarta Selatan, IndonesiaDurasi30 menitRumah produksiNET. NewsDistributorNet Visi MediaRilis asliJaringanNET.Format gambarHDTV (1080i 16:9)Format audioDolby Digital 5.1Rilis15 November 2021 (2021-11-15) –1 Juli 2022 (2022-7-1)Acara terkaitCurhat Ustad Amanah Islam Islam Itu Indah (Trans TV Satukan Shaf Indonesia (...

 

Ini adalah nama Toraja, marganya adalah Sambo Ferdy Sambo Perwira Tinggi Pelayanan Markas Kepolisian Negara Republik IndonesiaMasa jabatan4 Agustus 2022 – 19 September 2022PresidenJoko WidodoKepala Divisi Profesi dan Pengamanan Kepolisian Negara Republik IndonesiaMasa jabatan16 November 2020 – 18 Juli 2022[1] PendahuluIgnatius Sigit WidiatmonoPenggantiSyahar Diantono Informasi pribadiLahir9 Februari 1973 (umur 51)Barru, IndonesiaSuami/istriPutri Candrawathi&...

Mammalian protein found in Homo sapiens BMP1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes3EDG, 3EDHIdentifiersAliasesBMP1, bone morphogenetic protein 1, OI13, PCOLC, PCP, PCP2, TLDExternal IDsOMIM: 112264 MGI: 88176 HomoloGene: 55955 GeneCards: BMP1 Gene location (Human)Chr.Chromosome 8 (human)[1]Band8p21.3Start22,165,140 bp[1]End22,212,326 bp[1]Gene location (Mouse)Chr.Chromosome 14 (mouse)[2]Band14 D2|14 36.32 cMStart70,474,558 b...

 

Political party in Poland Solidarity Citizens' Committee Komitet Obywatelski SolidarnośćChairmanBronisław GeremekFounded18 December 1988; 35 years ago (1988-12-18)Dissolved1991; 33 years ago (1991)Succeeded byDemocratic UnionCentre AgreementSolidarity listHeadquartersWarsawNewspaperGazeta WyborczaTygodnik SolidarnośćIdeologyCatch-all partyLiberal democracyPolish nationalismAnti-communismPolitical positionBig tentColors  Red  Ora...

 

Bahasa diIndiaKeluarga bahasa di anak benua India.Nihali, Kusunda, dan Bahasa Thai tidak ditampilkan.ResmiAssam • Bengali • Bodo • Dogri • Inggris • Gujarat • Hindi • Kannada • Kashmir • Konkani • Maithili • Malayalam • Manipuri • Marathi • Nepal • Odia • Punjabi • Sanskerta • Santhali • Sindhi • Tamil • Telugu • Tulu • UrduIsyaratBah...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Makoto Sakurai桜井 誠Makoto Sakurai di depan Stasiun Ueno pada 24 Juli 2016, pada pemilihan gubernur Tokyo 2016 Pemimpin Partai Pertama JepangPetahanaMulai menjabat 26 Februari 2017PendahuluPemegang pertamaPenggantiPetahana Informasi pribadiLah...

 

Welsh poet and writer (1914–1953) For other uses, see Dylan Thomas (disambiguation). Dylan ThomasThomas at the Gotham Book Mart in New York, 1952BornDylan Marlais Thomas(1914-10-27)27 October 1914Uplands, Swansea, WalesDied9 November 1953(1953-11-09) (aged 39)New York City, USResting placeLaugharne, Carmarthenshire, WalesOccupationPoetwriterSpouse Caitlin Macnamara ​(m. 1937)​Children3, including AeronwyRelativesGordon Thomas (cousin) Dylan Marlais Tho...

 

Matthew Kneale (Londra, 24 novembre 1960) è uno scrittore britannico, conosciuto in particolare per il suo romanzo Il passeggero inglese. Indice 1 Biografia 2 Opere 2.1 Narrativa 2.2 Saggistica 3 Note 4 Collegamenti esterni Biografia Figlio degli scrittori Nigel Kneale[1] e Judith Kerr[2], ha frequentato la Latymer Upper School di Londra[3], e in seguito ha studiato storia moderna al Magdalen College (Oxford)[4], prima di trascorrere un anno in Giappone, dove ...

Specialty and plus size clothing company Charming Shoppes, Inc.IndustryRetailFounded1940; 84 years ago (1940)Defunct2012; 12 years ago (2012)FateMerger with Ascena Retail GroupHeadquartersBensalem, Pennsylvania, U.S.Key peopleJim P. Fogarty - President and Chief Executive OfficerProductsWoman's clothingRevenue$811 Million USD (2008)Number of employees10,300 (2008)ParentAscena Retail Group(2012–present)SubsidiariesLane BryantPetite SophisticateCatherinesWe...

 

For the museum in Paris, see Musée Rodin. 39°57′43″N 75°10′26″W / 39.962°N 75.174°W / 39.962; -75.174 Art museum in Philadelphia, PennsylvaniaRodin Museum(2024)EstablishedNovember 29, 1929 (1929-11-29)Location2151 Benjamin Franklin ParkwayPhiladelphia, PennsylvaniaCoordinates39°57′43″N 75°10′26″W / 39.962°N 75.174°W / 39.962; -75.174TypeArt museumCollectionsSculptureCollection size150 objects (bronzes, mar...

 

This article is about the former village of Dravlje. For the Dravlje District, see Dravlje District. Place in Upper Carniola, SloveniaDravljeDravljeLocation in SloveniaCoordinates: 46°4′49″N 14°28′47″E / 46.08028°N 14.47972°E / 46.08028; 14.47972Country SloveniaTraditional regionUpper CarniolaStatistical regionCentral SloveniaMunicipalityLjubljanaElevation[1]311 m (1,020 ft) Dravlje (pronounced [ˈdɾaːu̯ljɛ]; German: Draule[...

American college basketball season 2020–21 Alabama A&M Bulldogs basketballConferenceSouthwestern Athletic ConferenceRecord6–9 (4–9 SWAC)Head coachDylan Howard (3rd season)Associate head coachDerrick TilmonAssistant coaches Antwain Banks Carl Richburg Home arenaElmore GymnasiumSeasons← 2019–202021–22 → 2020–21 SWAC men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT Prairie View A&M 13 – 0 &...

 

In the 20th century, the United States began to invalidate laws against blasphemy which had been on the books since before the founding of the nation [citation needed], or prosecutions on that ground, as it was decided that they violated the American Constitution. The First Amendment to the United States Constitution provides that Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the ...

 

Diplomatic attempts to resolve the Israel-Palestine conflict in 2010 and 2011; failed Benjamin Netanyahu, Mahmoud Abbas, George J. Mitchell and Hillary Clinton at the start of direct talks on September 2, 2010. Direct negotiations between Israel and the Palestinian National Authority took place throughout 2010 as part of the peace process, between United States President Barack Obama, Israeli Prime Minister Benjamin Netanyahu, and Palestinian Authority Chairman Mahmoud Abbas. The ultimate aim...

The Tennis Courts are courts located at Olympiapark Berlin in Berlin, Germany. Located southwest of the Olympic Stadium, they hosted the basketball and the Épée fencing event for the 1936 Summer Olympics. References 1936 Summer Olympics official report. Volume 1. pp. 162–3. vte Venues of the 1936 Summer Olympics (Berlin)BerlinOlympic Park Dietrich Eckart Open-Air Theatre Hockey Stadium Hockey Stadium #2 House of German sports Mayfield Olympic Stadium Olympic Swimming Stadium Tennis C...

 

Asosiasi Sepak Bola KanadaCONCACAFDidirikanMei 1912; 112 tahun lalu (1912-05)Kantor pusat237 Metcalfe StreetOttawa, OntarioBergabung dengan FIFA1912–1926;1948–sekarangBergabung dengan CONCACAF18 September 1961(anggota asli)[1]PresidenCharmaine CrooksWebsitewww.canadasoccer.com Asosiasi Sepak Bola Kanada (bahasa Prancis: Association canadienne de soccer; bahasa Inggris: Canadian Soccer Association) adalah badan pengendali sepak bola di Kanada. Tim–tim Kanada umumnya ...

 

تصنيف كوبن للمناخمعلومات عامةالبداية 1884 سُمِّي باسم فلاديمير كوبن المكتشف أو المخترع فلاديمير كوبن تعديل - تعديل مصدري - تعديل ويكي بيانات توزيع الأقاليم المناخية في العالم[1]   Af   Am   Aw   BWh   BWk   BSh   BSk   Csa   Csb   Cwa   ...

Indian-American business executive (born 1967) Satya NadellaNadella in 2017BornSatya Narayana Nadella (1967-08-19) 19 August 1967 (age 56)Hyderabad, IndiaCitizenshipUnited States[1]Education Manipal Institute of Technology (BTech) University of Wisconsin, Milwaukee (MS) University of Chicago (MBA) Occupation(s)Chairman and CEO, MicrosoftSpouse Anupama Nadella ​(m. 1992)​Children3AwardsPadma Bhushan (2022)WebsiteMicrosoft profileSignature Satya Narayan...

 

Mixed-use development at 3000 and 3050 K Street, N.W., Washington, D.C., United States Washington HarbourThe Potomac River waterfront in Georgetown with Washington Harbour to the rightLocationWashington, D.C., U.S.Address3000 and 3050 K Street, N.W.Coordinates38°54′06″N 77°03′36″W / 38.901796°N 77.060086°W / 38.901796; -77.060086StatusCompleteGroundbreakingNovember 1981ConstructedJune 1986UseOffice space, retail space, condominiaWebsiteTheWashingtonHarbour....