Distance (graph theory)

In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance.[1] Notice that there may be more than one shortest path between two vertices.[2] If there is no path connecting the two vertices, i.e., if they belong to different connected components, then conventionally the distance is defined as infinite.

In the case of a directed graph the distance d(u,v) between two vertices u and v is defined as the length of a shortest directed path from u to v consisting of arcs, provided at least one such path exists.[3] Notice that, in contrast with the case of undirected graphs, d(u,v) does not necessarily coincide with d(v,u)—so it is just a quasi-metric, and it might be the case that one is defined while the other is not.

A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected.

The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in symbols,

It can be thought of as how far a node is from the node most distant from it in the graph.

The radius r of a graph is the minimum eccentricity of any vertex or, in symbols,

The diameter d of a graph is the maximum eccentricity of any vertex in the graph. That is, d is the greatest distance between any pair of vertices or, alternatively,

To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph.

A central vertex in a graph of radius r is one whose eccentricity is r—that is, a vertex whose distance from its furthest vertex is equal to the radius, equivalently, a vertex v such that ϵ(v) = r.

A peripheral vertex in a graph of diameter d is one whose eccentricity is d—that is, a vertex whose distance from its furthest vertex is equal to the diameter. Formally, v is peripheral if ϵ(v) = d.

A pseudo-peripheral vertex v has the property that, for any vertex u, if u is as far away from v as possible, then v is as far away from u as possible. Formally, a vertex v is pseudo-peripheral if, for each vertex u with d(u,v) = ϵ(v), it holds that ϵ(u) = ϵ(v).

A level structure of the graph, given a starting vertex, is a partition of the graph's vertices into subsets by their distances from the starting vertex.

A geodetic graph is one for which every pair of vertices has a unique shortest path connecting them. For example, all trees are geodetic.[4]

The weighted shortest-path distance generalises the geodesic distance to weighted graphs. In this case it is assumed that the weight of an edge represents its length or, for complex networks the cost of the interaction, and the weighted shortest-path distance dW(u, v) is the minimum sum of weights across all the paths connecting u and v. See the shortest path problem for more details and algorithms.

Algorithm for finding pseudo-peripheral vertices

Often peripheral sparse matrix algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm:

  1. Choose a vertex .
  2. Among all the vertices that are as far from as possible, let be one with minimal degree.
  3. If then set and repeat with step 2, else is a pseudo-peripheral vertex.

See also

Notes

  1. ^ Bouttier, Jérémie; Di Francesco, P.; Guitter, E. (July 2003). "Geodesic distance in planar graphs". Nuclear Physics B. 663 (3): 535–567. arXiv:cond-mat/0303272. Bibcode:2003NuPhB.663..535B. doi:10.1016/S0550-3213(03)00355-9. S2CID 119594729. By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces
  2. ^ Weisstein, Eric W. "Graph Geodesic". MathWorld--A Wolfram Web Resource. Wolfram Research. Archived from the original on 2008-04-23. Retrieved 2008-04-23. The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v
  3. ^ F. Harary, Graph Theory, Addison-Wesley, 1969, p.199.
  4. ^ Øystein Ore, Theory of graphs [3rd ed., 1967], Colloquium Publications, American Mathematical Society, p. 104

Read other articles:

Embrio manusia saat enam bulan Embriologi atau ilmu embrio merupakan bidang ilmu yang mempelajari bagaimana sel tunggal membelah dan berubah selama perkembangan untuk membentuk organisme multiseluler.[1] Proses ini dinamakan embriogenesis.[1] Embriologi dapat dibagi dalam beberapa jenis: Embriologi deskriptif menjelaskan perihal yang terjadi selama embriogenesis.[1] Embriologi komparatif pada organisme berbeda mengenai kejadian perubahan yang terjadi selama proses evol...

 

 

Stéphane MallarméLahir(1842-03-18)18 Maret 1842Paris, PrancisMeninggal9 September 1898Paris, PrancisPekerjaanpenyairKebangsaanPrancisGenreSyairAliran sastraSimbolisme Stéphane Mallarmé (IPA: [malaʁ'me]) (18 Maret 1842 – 9 September 1898), nama aslinya Étienne Mallarmé, adalah seorang penyair dan pengkritik Prancis. Mallarmé lahir di Paris. Ia bekerja sebagai seorang guru bahasa Inggris, dan menghabiskan sebagian hidupnya dalam kemiskinan; tetapi ia aalah peny...

 

 

Daftar Pahlawan Nasional Indonesia (per 2014) Pahlawan Nasional adalah gelar penghargaan tingkat tertinggi di Indonesia.[1] Gelar anumerta ini diberikan oleh Pemerintahan Indonesia atas tindakan yang dianggap heroik – didefinisikan sebagai perbuatan nyata yang dapat dikenang dan diteladani sepanjang masa bagi warga masyarakat lainnya atau berjasa sangat luar biasa bagi kepentingan bangsa dan negara.[2] Sebanyak 190 pria dan 16 wanita telah diangkat sebagai Pah...

Mappa dell'Italia negli anni '30: in rosa i territori del Regno d'Italia (1918-1940); in verde i territori che facevano parte degli ex stati italiani, rivendicati dai nazionalisti italiani (terre irredente); in viola altri territori con popolazione italica che facevano parte degli ex stati italiani Le aspirazioni irredentiste nei Balcani nel 1912 L'irredentismo è l'aspirazione di un popolo a completare la propria unità territoriale nazionale acquisendo terre soggette al dominio straniero, o...

 

 

Untuk penggunaan lain, lihat Medellín (disambiguation). MedellínPanorama kota BenderaLambangJulukan: Kota Pegunungan, Kota Bunga, Kota Anggrek, Desa yang Indah, Gelas Perak Mungil, MedalloMotto: La ciudad de la eterna primaveraMedellin, Kota dengan musim semi abadiLokasi kota (dot berwarna merah) dan area (warna abu-abu) dari Medellín di provinsi Antioquia.DepartemenDepartemen AntioquiaSub-RegionValle de AburráTanggal peresmian2 Maret 1616Pemerintahan • WalikotaDanie...

 

 

North Sea Germanic people, from the eponymous area AnglesÆngle / EngleThe spread of Angles (orange) and Saxons (blue) to the British Isles around 500 ADRegions with significant populationsorigin: southern Jutland:Schleswig (Anglia, Schwansen, Danish Wahld, North Frisia/North Frisian Islands)Holstein (Eiderstedt, Dithmarschen)destination: Heptarchy (England)LanguagesOld EnglishReligionOriginally Germanic and Anglo-Saxon paganism, later ChristianityRelated ethnic groupsAnglo-Saxons, Anglo...

Public park located in Fresno, California, US Woodward ParkLakeside of Woodward ParkNearest cityFresno, California, USArea300 acres (120 ha)Opened1968Operated byCity of Fresno Parks Department Woodward Park is a public park located in Fresno, California, abutting the San Joaquin River, opened in 1968. It is named after the late Ralph Woodward who bequeathed a portion of his estate to provide a regional park and bird sanctuary in Fresno. The park has a multi-use amphitheatre, an...

 

 

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

 

 

I cantanti dell'Orchestra napoletana diretta da Luigi Vinci, qui ritratto al centro, in occasione di una trasmissione di Invito alla canzone allestita al Teatro Mercadante di Napoli. Luigi Vinci (... – ...; fl. XX secolo) è stato un compositore e direttore d'orchestra italiano. Indice 1 Biografia 2 Note 3 Bibliografia 4 Collegamenti esterni Biografia Nel 1950 comincia ad incidere incidere i primi dischi per la casa discografica Cetra, per poi incidere con varie etichette, come Fonit, Italb...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

 

بطولة تونس للكرة الطائرة للرجال الموسم 1999-1998 البلد تونس  المنظم الجامعة التونسية للكرة الطائرة  النسخة 44 الفائز الترجي الرياضي التونسي بطولة تونس للكرة الطائرة للرجال 1997-1998 بطولة تونس للكرة الطائرة للرجال 1999-2000 تعديل مصدري - تعديل   بطولة تونس للكرة الطائرة للرجال ...

 

 

U.S. presidential administration from 1989 to 1993 Not to be confused with that of his son, the Presidency of George W. Bush. For a chronological guide, see Timeline of the George H. W. Bush presidency. Presidency of George H. W. BushJanuary 20, 1989 – January 20, 1993CabinetSee listPartyRepublicanElection1988SeatWhite House← Ronald ReaganBill Clinton → Seal of the presidentLibrary website This article is part of a series aboutGeorge H. W. Bush Family Electora...

British chemist (1893–1970) SirChristopher Kelk IngoldBEM FRSIngold, as photographed in Michigan State University.Born(1893-10-28)28 October 1893London, EnglandDied8 December 1970(1970-12-08) (aged 77)Edgware, London, EnglandNationalityBritishAlma materHartley University College (now University of Southampton)Imperial College LondonKnown forOrganic reaction mechanismsCahn–Ingold–Prelog rulesHughes–Ingold rulesThorpe-Ingold effectAwards Davy Medal (1946) Royal Medal ...

 

 

International day to raise awareness for press freedom World Press Freedom DayWorld Press Freedom Day 2017 posterObserved byUNESCOCelebrationsUNESCODateMay 3Next timeMay 3, 2025 (2025-05-03)FrequencyAnnualRelated toCelebrates the fundamental principles of press freedom, to evaluate press freedom around the world, to defend the media from attacks on their independence and to pay tribute to journalists who have lost their lives in the exercise of their profession. The United...

 

 

Libor Kozák Informasi pribadiNama lengkap Libor KozákTanggal lahir 30 Mei 1989 (umur 35)Tempat lahir Opava, CekoslowakiaTinggi 1,93 m (6 ft 4 in)Posisi bermain PenyerangInformasi klubKlub saat ini U.S. ArezzoNomor 9Karier junior1996–2001 TJ Slezská Hořina Brumovice2001–2006 SFC OpavaKarier senior*Tahun Tim Tampil (Gol)2006–2008 SFC Opava 41 (19)2008–2013 Lazio 58 (10)2009–2010 → Brescia (pinjaman) 29 (3)2013–2017 Aston Villa 20 (4)2016–2017 Aston Villa...

WWE Hall of Fame induction ceremony WWE Hall of Fame (2018)PromotionWWEDateApril 6, 2018CityNew Orleans, LouisianaVenueSmoothie King CenterWWE Hall of Fame chronology ← Previous2017 Next →2019[1][2] WWE Hall of Fame (2018) was the event that featured the introduction of the 19th class to the WWE Hall of Fame. The event was produced by WWE on April 6, 2018, from the Smoothie King Center in New Orleans, Louisiana. The event took place the same weekend as WrestleMan...

 

 

العلاقات اللبنانية الليبية لبنان ليبيا   لبنان   ليبيا تعديل مصدري - تعديل   العلاقات اللبنانية الليبية هي العلاقات الثنائية التي تجمع بين لبنان وليبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة لبنان ليبي...

 

 

Badminton Oceania(Bulu Tangkis Oseania)Logo baru diluncurkan oleh organisasi Bulu Tangkis OseaniaSingkatanBOTipeFederasi olahragaKantor pusatWilliamstown, Victoria, AustraliaJumlah anggota 17 asosiasi anggotaPresiden Robin BryantSitus webhttp://www.oceaniabadminton.org/ Logo dengan nama lama Bulu Tangkis Oseania (Bahasa Inggris:Badminton Oceania) disingkat (BOC) adalah badan pengedali bulu tangkis di Oceania. Ini adalah salah satu 5 badan benua di bawah bendera Federasi Bulu Tangkis Dunia (BW...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: ラジオゾンデ – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年9月) 気球に取り付けられる直前のラジオゾンデ(�...

 

 

American historian (born 1953) H.W. BrandsBrands at the 2012 Texas Book FestivalBorn (1953-08-07) August 7, 1953 (age 71)Portland, Oregon, U.SChildrenHal BrandsAcademic backgroundAlma materStanford University (BA)Reed College (MA)Portland State University (MS)University of Texas (PhD)Doctoral advisorRobert A. DivineAcademic workDisciplineHistorySub-disciplineAmerican historyInstitutionsAustin Community College DistrictUniversity of Texas School of LawVanderbilt UniversityTexas A&M Un...