五面體
在幾何學中,五面體是指由五個面組成的多面體。沒有任何五面體是正五面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的正五面體,但若放寬限制,不考慮是否所有面全等的話則有一種多面體由正多邊形組成、邊長全部等長、所有角相等的多面體,即三角柱,有時會稱為半正五面體。五個面的多面體可以是三角柱、四角錐等多面體。此外五面體的形狀也可以用在動力不穩定性的研究上[1]。 常見的五面體在所有凸五面體當中,共有2種拓樸結構有明顯差異的凸五面體[2],分別為四角錐和三角柱[3] 。拓樸結構有明顯差異意味著兩種多面體無法透過移動頂點位置、扭曲或伸縮來相互變換的多面體,例如四角錐和三角柱無論如何變形都無法互相變換,因此拓樸結構不同,但三角柱和三角錐台可以透過伸縮其中一個三角形面來彼此互換,因此三角柱和三角錐台在拓樸上並無明顯差異。 三角柱三角柱也是凸五面體的一種[4] ,其由2個三角形和3個矩形組成,是一種底面為三角形的柱體。有一些五面體與三角柱擁有相同的拓樸結構,例如三角錐台和楔體等形狀。 四角錐四角錐是五面體中的另一種形式,與楔體、三角柱和三角錐台有著明顯不同的拓樸結構。四角錐是一種底面為四邊形的錐體。雖然正四角錐每個面都是正多邊形,但由於其並非所有角都相等因此不能算是半正多面體,這類型的多面體可以歸類為詹森多面體。 五面形五面形是一種多面形,為退化的五面體,無法擁有體積,由五個二角形組成。在球面幾何學中,五面形可以在球面上以鑲嵌的方式存在,表示五個鑲嵌在球體上的球弓形,施萊夫利符號中利用{2,5}來表示,其對偶多面體是五邊形二面體。 五面形由五個二角形組成,每個頂點都是五個二角形的公共頂點。正五面形的每個面都是正二角形,且每個頂點都是五個正二角形的公共頂點,因此正五面形也可以視為一種正多面體,但是因為其已退化,因此不會與柏拉圖立體一同討論。 五面形具有D5h, [2,5], (*225)的對稱性和D5, [2,5]+的旋轉對稱性,且階數為20,在考克斯特符號中用表示,其對稱性與五角柱相同,因此五角柱也可以視為一種與五面形相關的立體,因為五角柱可以經由五面形透過截角變換構造。 五面體列表
參見參考文獻
Information related to 五面體 |