Гендерна чутливість
|
Read other articles:
Zenas R. BlissMayjen Zenas R. BlissLahir(1835-04-17)17 April 1835Johnston, Rhode IslandMeninggal2 Januari 1900(1900-01-02) (umur 64)Washington, D.C.Tempat pemakamanArlington National CemeteryPengabdianAmerika SerikatUnionDinas/cabangAngkatan Darat Amerika SerikatUnion ArmyLama dinas1854–1897Pangkat Mayor JenderalKomandan10th Regiment Rhode Island Volunteer Infantry 7th Regiment Rhode Island Volunteer Infantry1st Brigade, 2nd Division, IX Corps 24th U.S. InfantryDepartment of Texas...
Untuk kegunaan lain, lihat Anastasius (disambiguasi). Santo AnastasiusLahirAbad ke-6PersiaMeninggal22 Januari 628Dataran EfratDihormati diGereja Ortodoks Timur, Gereja Katolik RomaPesta22 Januari Santo Anastasius (meninggal tahun 628) adalah seorang Kristen dari Persia yang meninggal sebagai martir.[1][2] Pada awalnya Anastasius adalah seorang tentara Persia bernama Magundat.[2] Ia ikut dalam penyerangan Persia ke kota Yerusalem pada tahun 614.[2] Hatinya terge...
Cet article est une ébauche concernant le chemin de fer et le Japon. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. LigneUchibō Ligne de Soga à Awa-Kamogawa Carte de la ligne Une automotrice série 255 sur la ligne Uchibō Pays Japon Villes desservies Chiba, Ichihara, Kamogawa Historique Mise en service 1912 Caractéristiques techniques Longueur 119,4 km Vitesse maximale commerciale 110 km/h Écartement...
Questa voce sull'argomento chimici statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Leo Hendrik Baekeland Leo Hendrik Baekeland (Sint-Martens-Latem, 14 novembre 1863[1] – Beacon, 23 febbraio 1944[1]) è stato un chimico statunitense di origine belga, inventore della bachelite, la prima resina sintetica. Indice 1 Biografia 2 Note 3 Altri progetti 4 Collegamenti esterni Biografia Figlio di un calzolaio, si appassionò a chi...
Battle of OctodurusPart of the Gallic WarsDate57–56 BCLocationOctodurus, Vallis Poenina (Valais), GaulResult Roman victoryBelligerents Roman Republic Seduni,VeragriCommanders and leaders Servius Sulpicius Galba[data missing]Strength about 5,000 men (1 legion) 30,000 (doubtful[1])Casualties and losses c. 10,000 killed or wounded (doubtful[1]) vteGallic Wars Magetobriga (63 BC) Arar (58 BC) Bibracte (58 BC) Vosges (58 BC) Axona (57 BC) Sabis (57 BC) Atuatuci (57 BC) Oc...
Pour les articles homonymes, voir Allègre (homonymie). Pour l’article ayant un titre homophone, voir Alègre. Allègre Le village d'Allègre, dominé par les ruines du château, surnommées la « Potence ». Héraldique Administration Pays France Région Auvergne-Rhône-Alpes Département Haute-Loire Arrondissement Le Puy-en-Velay Intercommunalité Communauté d'agglomération du Puy-en-Velay Maire Mandat Gilbert Meyssonnier 2020-2026 Code postal 43270 Code commune 43003 Démogr...
Questa voce sull'argomento calciatori danesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Asger Sørensen Nazionalità Danimarca Altezza 191 cm Calcio Ruolo Difensore Squadra Sparta Praga Carriera Giovanili 2011-2014 Midtjylland Squadre di club1 2014-2019 Salisburgo3 (0)2014-2017→ Liefering41 (1)2017-2019→ Jahn Ratisbona52 (0)2019-2022 Norimberga87 (8)2022-&...
Intercollegiate basketball season 2013–14 USC Trojans women's basketballPac-12 Tournament ChampionsNCAA Women's Tournament, first roundConferencePac-12 ConferenceRecord22–13 (11–7 Pac-12)Head coachCynthia Cooper-DykeAssistant coaches Brandy Manning Jualeah Woods Evan Unrau Home arenaGalen CenterSeasons← 2012–132014–15 → 2013–14 Pac-12 Conference women's basketball standings vte Conf Overall Team W L PCT W L PCT No...
ASD Calcio Zola PredosaCalcio Zolesi, Rossoblù, Zeta, Predosini Segni distintiviUniformi di gara Casa Trasferta Colori sociali Rosso, blu SimboliZ, Delfino Dati societariCittàZola Predosa Nazione Italia ConfederazioneUEFA Federazione FIGC CampionatoEccellenza Fondazione1991 Presidente Mauro Lasi Allenatore Enrico Frigeri StadioEnrico Filippetti(1 000 posti) Sito webwww.zolapredosacalcio.it PalmarèsTrofei nazionali1 Coppa Italia Dilettanti Dati aggiornati al 1º luglio 2022Si ...
Hall in Wrocław, Poland This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2014) (Learn how and when to remove this message) 51°06′35″N 17°01′54″E / 51.10972°N 17.03167°E / 51.10972; 17.03167 Old Town Hall, east elevation The Old Town Hall (Polish: Stary Ratusz, German: Breslauer Rathaus) of Wrocław stands at the ce...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
English rugby union football club For the cricket team, see Yorkshire County Cricket Club. For other clubs with a similar name, see Leeds Carnegie. Rugby teamLeeds TykesFull nameLeeds Tykes Rugby Union Football ClubUnionYorkshire RFUFounded1991; 33 years ago (1991)LocationBramhope, West Yorkshire, EnglandGround(s)The Sycamores (Capacity: 1,500)Director of RugbyPeter SeabourneCaptain(s)Adam BrownLeague(s)National League 2 North2023–24Runners up 1st kit 2nd kit Official webs...
2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)...
密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
1961 compilation album by Frankie LaineFrankie Laine's Golden HitsCompilation album by Frankie LaineReleased1961LabelMercury Professional ratingsReview scoresSourceRatingAllMusic[1]Billboard[2] Frankie Laine's Golden Hits is a compilation album by Frankie Laine, released in 1961 by Mercury Records.[1][3] The album, available both in mono and in stereo, was a remastered compilation of the singer's early hits such as That Lucky Old Sun, That's My Desire, ...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Yuki ShibagakiInformasi pribadiNama lengkap Yuki ShibagakiTanggal lahir 6 Mei 1987 (umur 37)Tempat lahir Prefektur Hyogo, JepangPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)2006 Vissel Kobe * Penampilan dan gol di klub senior hanya ...
1989 air battle between Libyan and US aircraft 1989 air battle near TobrukPart of the Cold WarGun camera still of the lead F-14 showing the second MiG-23 exploding after being hit by an AIM-9 Sidewinder missileDate4 January 1989LocationMediterranean Sea33°30′N 23°24′E / 33.5°N 23.4°E / 33.5; 23.4Result U.S. victory Two Libyan MiG-23 fighters shot downBelligerents United States LibyaCommanders and leaders Ronald Reagan Muammar GaddafiStrength 2 F-14A...
Principle in geometry In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines. Formally, given any five points in the plane in general linear position, meaning no three collinear, there is a unique conic passing through them, w...