Five points determine a conic

In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

Formally, given any five points in the plane in general linear position, meaning no three collinear, there is a unique conic passing through them, which will be non-degenerate; this is true over both the Euclidean plane and any pappian projective plane. Indeed, given any five points there is a conic passing through them, but if three of the points are collinear the conic will be degenerate (reducible, because it contains a line), and may not be unique; see further discussion.

Proofs

This result can be proven numerous different ways; the dimension counting argument is most direct, and generalizes to higher degree, while other proofs are special to conics.

Dimension counting

Intuitively, passing through five points in general linear position specifies five independent linear constraints on the (projective) linear space of conics, and hence specifies a unique conic, though this brief statement ignores subtleties.

More precisely, this is seen as follows:

  • conics correspond to points in the five-dimensional projective space
  • requiring a conic to pass through a point imposes a linear condition on the coordinates: for a fixed the equation is a linear equation in
  • by dimension counting, five constraints (that the curve passes through five points) are necessary to specify a conic, as each constraint cuts the dimension of possibilities by 1, and one starts with 5 dimensions;
  • in 5 dimensions, the intersection of 5 (independent) hyperplanes is a single point (formally, by Bézout's theorem);
  • general linear position of the points means that the constraints are independent, and thus do specify a unique conic;
  • the resulting conic is non-degenerate because it is a curve (since it has more than 1 point), and does not contain a line (else it would split as two lines, at least one of which must contain 3 of the 5 points, by the pigeonhole principle), so it is irreducible.

The two subtleties in the above analysis are that the resulting point is a quadratic equation (not a linear equation), and that the constraints are independent. The first is simple: if A, B, and C all vanish, then the equation defines a line, and any 3 points on this (indeed any number of points) lie on a line – thus general linear position ensures a conic. The second, that the constraints are independent, is significantly subtler: it corresponds to the fact that given five points in general linear position in the plane, their images in under the Veronese map are in general linear position, which is true because the Veronese map is biregular: i.e., if the image of five points satisfy a relation, then the relation can be pulled back and the original points must also satisfy a relation. The Veronese map has coordinates and the target is dual to the of conics. The Veronese map corresponds to "evaluation of a conic at a point", and the statement about independence of constraints is exactly a geometric statement about this map.

Synthetic proof

That five points determine a conic can be proven by synthetic geometry—i.e., in terms of lines and points in the plane—in addition to the analytic (algebraic) proof given above. Such a proof can be given using a theorem of Jakob Steiner,[1] which states:

Given a projective transformation f, between the pencil of lines passing through a point X and the pencil of lines passing through a point Y, the set C of intersection points between a line x and its image forms a conic.
Note that X and Y are on this conic by considering the preimage and image of the line XY (which is respectively a line through X and a line through Y).

This can be shown by taking the points X and Y to the standard points and by a projective transformation, in which case the pencils of lines correspond to the horizontal and vertical lines in the plane, and the intersections of corresponding lines to the graph of a function, which (must be shown) is a hyperbola, hence a conic, hence the original curve C is a conic.

Now given five points X, Y, A, B, C, the three lines can be taken to the three lines by a unique projective transform, since projective transforms are simply 3-transitive on lines (they are simply 3-transitive on points, hence by projective duality they are 3-transitive on lines). Under this map X maps to Y, since these are the unique intersection points of these lines, and thus satisfy the hypothesis of Steiner’s theorem. The resulting conic thus contains all five points, and is the unique such conic, as desired.

Parabola construction, given five points

Construction

Given five points, one can construct the conic containing them in various ways.

Analytically, given the coordinates of the five points, the equation for the conic can be found by linear algebra, by writing and solving the five equations in the coefficients, substituting the variables with the values of the coordinates: five equations, six unknowns, but homogeneous so scaling removes one dimension; concretely, setting one of the coefficients to 1 accomplishes this.

This can be achieved quite directly as the following determinantal equation:

This matrix has variables in its first row and numbers in all other rows, so the determinant is visibly a linear combination of the six monomials of degree at most 2. Also, the resulting polynomial clearly vanishes at the five input points (when ), as the matrix has then a repeated row.

Synthetically, the conic can be constructed by the Braikenridge–Maclaurin construction,[2][3][4][5] by applying the Braikenridge–Maclaurin theorem, which is the converse of Pascal's theorem. Pascal's theorem states that given 6 points on a conic (a hexagon), the lines defined by opposite sides intersect in three collinear points. This can be reversed to construct the possible locations for a 6th point, given 5 existing ones.

Generalizations

The natural generalization is to ask for what value of k a configuration of k points (in general position) in n-space determines a variety of degree d and dimension m, which is a fundamental question in enumerative geometry.

A simple case of this is for a hypersurface (a codimension 1 subvariety, the zeros of a single polynomial, the case ), of which plane curves are an example.

In the case of a hypersurface, the answer is given in terms of the multiset coefficient, more familiarly the binomial coefficient, or more elegantly the rising factorial, as:

This is via the analogous analysis of the Veronese map: k points in general position impose k independent linear conditions on a variety (because the Veronese map is biregular), and the number of monomials of degree d in variables (n-dimensional projective space has homogeneous coordinates) is from which 1 is subtracted because of projectivization: multiplying a polynomial by a constant does not change its zeros.

In the above formula, the number of points k is a polynomial in d of degree n, with leading coefficient

In the case of plane curves, where the formula becomes:

whose values for are – there are no curves of degree 0 (a single point is a point and is thus determined by a point, which is codimension 2), 2 points determine a line, 5 points determine a conic, 9 points determine a cubic, 14 points determine a quartic, and so forth.

While five points determine a conic, sets of six or more points on a conic are not in general position, that is, they are constrained as is demonstrated in Pascal's theorem.

Similarly, while nine points determine a cubic, if the nine points lie on more than one cubic—i.e., they are the intersection of two cubics—then they are not in general position, and indeed satisfy an addition constraint, as stated in the Cayley–Bacharach theorem.

Four points do not determine a conic, but rather a pencil, the 1-dimensional linear system of conics which all pass through the four points (formally, have the four points as base locus). Similarly, three points determine a 2-dimensional linear system (net), two points determine a 3-dimensional linear system (web), one point determines a 4-dimensional linear system, and zero points place no constraints on the 5-dimensional linear system of all conics.

The Apollonian circles are two 1-parameter families determined by 2 points.

As is well known, three non-collinear points determine a circle in Euclidean geometry and two distinct points determine a pencil of circles such as the Apollonian circles. These results seem to run counter the general result since circles are special cases of conics. However, in a pappian projective plane a conic is a circle only if it passes through two specific points on the line at infinity, so a circle is determined by five non-collinear points, three in the affine plane and these two special points. Similar considerations explain the smaller than expected number of points needed to define pencils of circles.

Tangency

Instead of passing through points, a different condition on a curve is being tangent to a given line. Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 25 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative geometry; formalizing this intuition requires significant further development to justify.

Another classic problem in enumerative geometry, of similar vintage to conics, is the Problem of Apollonius: a circle that is tangent to three circles in general determines eight circles, as each of these is a quadratic condition and 23 = 8. As a question in real geometry, a full analysis involves many special cases, and the actual number of circles may be any number between 0 and 8, except for 7.

See also

References

  1. ^ Interactive Course on Projective Geometry Archived 2017-11-27 at the Wayback Machine, Chapter Five: The Projective Geometry of Conics Archived 2017-12-22 at the Wayback Machine: Section Four: Conics on the real projective plane Archived 2018-04-24 at the Wayback Machine, by J.C. Álvarez Paiva; proof follows Exercise 4.6
  2. ^ (Coxeter 1961, pp. 252–254)
  3. ^ The Animated Pascal, Sandra Lach Arlinghaus
  4. ^ Weisstein, Eric W. "Braikenridge-Maclaurin Construction." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Braikenridge-MaclaurinConstruction.html
  5. ^ The GNU 3DLDF Conic Sections Page: Pascal's Theorem and the Braikenridge-Maclaurin Construction, Laurence D. Finston
  • Coxeter, H. S. M. (1961), Introduction to Geometry, Washington, DC{{citation}}: CS1 maint: location missing publisher (link)
  • Coxeter, H. S. M.; Greitzer, S. L. (1967), Geometry Revisited, Washington, DC: Mathematical Association of America, p. 76
  • Dixon, A. C. (March 1908), "The Conic through Five Given Points", The Mathematical Gazette, 4 (70), The Mathematical Association: 228–230, doi:10.2307/3605147, JSTOR 3605147, S2CID 125356690

Read other articles:

Belgio Uniformi di gara Casa Trasferta Sport Calcio Federazione URBSFA/KBVB[N 1]francese: Union Royale Belge des Sociétés de Football Associationolandese: Koninklijke Belgische Voetbalbond Confederazione UEFA Codice FIFA BEL Soprannome De Rode DuivelsLes Diables RougesDie Roten Teufel(i Diavoli rossi) Selezionatore Domenico Tedesco Record presenze Jan Vertonghen (153) Capocannoniere Romelu Lukaku (83) Ranking FIFA 4º (30 novembre 2023)[1] Sponsor tecnico Adidas Esordio int...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2011) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2011) (Lear...

 

 

Culinary traditions of Ivory Coast Location of Ivory Coast Ivorian cuisine is the traditional cuisine of Côte d'Ivoire, or the Ivory Coast, and is based on tubers, grains, pig, chicken, seafood, fish, fresh fruits, vegetables and spices. It is very similar to that of neighboring countries in West Africa. Common staple foods include grains and tubers. Côte d'Ivoire is one of the largest cocoa producers in the world and also produces palm oil and coffee. Common foods and dishes Raw cassava Ca...

PenarolCalcio Leão da Velha Serpa, Leão Azul Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Blu, bianco Dati societari Città Itacoatiara Nazione  Brasile Confederazione CONMEBOL Federazione CBF Campionato Campionato Amazonense Fondazione 1947 Presidente Ila Rabelo Allenatore Edmilson de Jesus Stadio Floro de Mendonça(2 710 posti) Sito web www.penarol.com.br Palmarès Si invita a seguire il modello di voce Il Penarol Atlético Clube, noto anche semplicemente com...

 

 

Railway station in Cumbria, England For the station in Ohio, United States, see Green Road station. Green RoadGeneral informationLocationMillom Without, CopelandEnglandCoordinates54°14′40″N 3°14′43″W / 54.2444234°N 3.2453885°W / 54.2444234; -3.2453885Grid referenceSD189839Owned byNetwork RailManaged byNorthern TrainsPlatforms2Tracks2Other informationStation codeGNRClassificationDfT category F2HistoryOriginal companyWhitehaven and Furness Junction RailwayPre...

 

 

Resort in France owned by The Walt Disney Company Disneyland ParisPreviously known as Euro Disney Resort and Disneyland Resort ParisSleeping Beauty Castle in Disneyland ParkLocationMarne-la-Vallée, FranceCoordinates48°52′07″N 02°46′55″E / 48.86861°N 2.78194°E / 48.86861; 2.78194StatusOperatingOpened12 April 1992; 32 years ago (1992-04-12)OwnerDisney Experiences(The Walt Disney Company)Attendance375 million (overall as of 2022)Websitedisne...

Voltairine de CleyreVoltairine de Cleyre di Philadelphia, 1901 (usia 35)Lahir(1866-11-17)17 November 1866Leslie, MichiganMeninggal20 Juni 1912(1912-06-20) (umur 45)Rumah sakit St. Mary of Nazareth Hospital di Chicago, IllinoisPekerjaanpenulis, pengajar, tutor Voltairine de Cleyre (17 November 1866 – 20 Juni 1912)[1] adalah seorang anarkis berkebangsaan Amerika Serikat. Dikenal sebagai seorang penulis dan pembicara serta menjadi penentang Kapitalisme,pernikahan ne...

 

 

Polish cyclist Daniel StaniszewskiStaniszewski in 2017Personal informationFull nameDaniel StaniszewskiBorn (1997-05-05) 5 May 1997 (age 26)Ciechanów, PolandHeight1.87 m (6 ft 2 in)Weight77 kg (170 lb)Team informationCurrent teamMazowsze Serce PolskiDisciplinesTrackRoadRoleRiderAmateur team2017–2020KS Pogoń Mostostal Puławy Professional teams2016Verva ActiveJet2020–Mazowsze Serce Polski[1] Medal record Representing  Poland Men's track...

 

 

Peta wilayah Bremen-Verden (warna pink muda). Bremen-Verden, secara resmi dikenal dengan nama Kadipaten Bremen dan Verden (pelafalan dalam bahasa Jerman: [ˈfɛːɐ̯dən]; Jerman: Herzogtümer Bremen und Verdencode: de is deprecated ), adalah dua wilayah fief Kekaisaran Romawi Suci yang memperoleh status reichsfreiheit pada tahun 1180. Pada awalnya keduanya bernama Keuskupan Agung Bremen dan Keuskupan Verden. Pada tahun 1648, kedua keuskupan ini disekularisasi, atau dalam kata lain d...

Pour les articles homonymes, voir You. Cet article est une ébauche concernant une chanson, la Géorgie et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. You Chanson de Tornike Kipiani auConcours Eurovision de la chanson 2021 Sortie 2021 Durée 3:04 Langue Anglais Genre Chanson géorgienne Classement 2e demi-finale : À venir Chansons représentant la Géorgie au ...

 

 

Narasumber sedang menyampaikan materi pada sebuah seminar. Sebuah keterlibatan perempuan instruktur membahas di Bengali Wikipedia dalam sebuah seminar di Dhaka pada 2015 Seminar adalah pertemuan berkala yang diadakan oleh seseorang yang sedang melaksanakan tugasnya.[1] Seminar berasal dari kata Latin semin yang berarti benih atau dari kata seminarium, yang artinya tanah tempat menanam benih. Jadi, seminar memiliki arti tempat benih-benih kebijaksanaan. Kebijaksanaan yang dimaksud tent...

 

 

1932 Estonian parliamentary election ← 1929 23 May 1932 1938 → ← outgoing memberselected members →100 seats in the Riigikogu51 seats needed for a majority   First party Second party Third party   Leader Konstantin Päts Jaan Tõnisson August Rei Party AVK RKE ESTP Last election 38 seats 26 seats 25 seats Seats won 42 23 22 Seat change 4 3 3 Popular vote 199,035 110,662 104,662 Percentage 39.8% 22.1% 20.9% State Elder b...

Jalan Tol Palimanan-KanciPalikanciInformasi ruteBagian dari Jalan Tol Trans-JawaDikelola oleh PT Jasa MargaPanjang:26 km (16 mi)Berdiri:24 Januari 1998; 26 tahun lalu (1998-01-24) – sekarangSejarah:Dibangun sejak 1996Persimpangan besarUjung Barat: Jalan Tol Cikopo-Palimanan Ramp PalimananSimpang Susun PlumbonSimpang Susun CipernaSimpang Susun KanciUjung Timur: Jalan Tol Kanci-PejaganLetakKota besar:Kota CirebonKabupaten CirebonSistem jalan bebas hambatanAH 2 Sistem ...

 

 

Douglas Dolphin adalah perahu terbang amfibi sayap tinggi (high wing). Sementara hanya 58 yang dibangun, mereka melayani berbagai peran: pesawat yacht pribadi, transportasi militer, dan pencarian dan penyelamatan.[1] Dolphin berasal pada tahun 1930 sebagai Sinbad, perahu terbang murni tanpa roda. Sinbad ini dimaksudkan sebagai yacht terbang mewah. Tak gentar dengan kurangnya permintaan, Douglas meningkatkan Sinbad pada tahun 1931 sehingga amfibi itu dan bisa mendarat di air atau dara...

 

 

Japanese professional wrestler (born 1990) Naoki Tanisaki redirects here. Not to be confused with T. Hawk or Naoki Tanizaki. T-HawkOnodera in February 2022Birth nameTakuya OnoderaBorn (1990-04-30) April 30, 1990 (age 34)[1]Tomakomai, Hokkaido[1]Professional wrestling careerRing name(s)Mr. Pii Pii Tomakomai Penguin[1]Naoki Tanisaki[2]Takuya Tomakomai[2]T-HawkTomahawkTomahawk T.T.[2]Billed height1.74 m (5 ft 8+1⁄2 in)[...

Share of renewable energy in gross final energy consumption in selected European countries (2021)   n/a   10–20%   20–30%   30–40%   40–50%   >50% This article needs to be updated. Please help update this article to reflect recent events or newly available information. (February 2024) Renewable energy progress in the European Union (EU) is driven by the European Commission's 2023 revision of the Renewable Energy Directive...

 

 

Este artículo se refiere o está relacionado con un evento deportivo de motor reciente o actualmente en curso. La información de este artículo puede cambiar frecuentemente. Por favor, no agregues datos especulativos y recuerda colocar referencias a fuentes fiables para dar más detalles. Temporada 2024 de Fórmula 1 Campeonato Mundial de Fórmula 1 de la FIA Datos generalesFecha 2024Edición 75Organizador Federación Internacional del AutomóvilDatos estadísticosParticipantes 20 pilotos,...

 

 

تصفيات بطولة أمم أوروبا 2016 المجموعة بمعلومات عامةالرياضة كرة القدم الاتحاد الاتحاد الأوروبي لكرة القدم الفئة كرة القدم للرجال جزء من تصفيات بطولة أمم أوروبا 2016 الفترة 2016 البداية 2014 — 9 سبتمبر 2014 النهاية 2015 — 13 أكتوبر 2015 الفرق المشاركة  القائمة ... منتخب بلجيكا لكرة القدم...

Peta infrastruktur dan tata guna lahan di Komune Bazoilles-sur-Meuse.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiBazoilles-sur-Meuse merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle All...

 

 

香港政治系列條目 政府 憲制文件 《英皇制誥》 《皇室訓令》 《中英聯合聲明》(有争议) 《中華人民共和國憲法》 《香港特別行政區基本法》 行政長官:李家超 行政會議(成員) 維護國家安全委員會 行政長官辦公室 特首政策組 政府部門 政府總部 政治任命官員 主要官員 決策局(演變) 公務員 常任秘書長 部門首長 政務主任 立法會(現屆) 地區直選 功能界別 區議...