Weierstrass point

In mathematics, a Weierstrass point on a nonsingular algebraic curve defined over the complex numbers is a point such that there are more functions on , with their poles restricted to only, than would be predicted by the Riemann–Roch theorem.

The concept is named after Karl Weierstrass.

Consider the vector spaces

where is the space of meromorphic functions on whose order at is at least and with no other poles. We know three things: the dimension is at least 1, because of the constant functions on ; it is non-decreasing; and from the Riemann–Roch theorem the dimension eventually increments by exactly 1 as we move to the right. In fact if is the genus of , the dimension from the -th term is known to be

for

Our knowledge of the sequence is therefore

What we know about the ? entries is that they can increment by at most 1 each time (this is a simple argument: has dimension as most 1 because if and have the same order of pole at , then will have a pole of lower order if the constant is chosen to cancel the leading term). There are question marks here, so the cases or need no further discussion and do not give rise to Weierstrass points.

Assume therefore . There will be steps up, and steps where there is no increment. A non-Weierstrass point of occurs whenever the increments are all as far to the right as possible: i.e. the sequence looks like

Any other case is a Weierstrass point. A Weierstrass gap for is a value of such that no function on has exactly a -fold pole at only. The gap sequence is

for a non-Weierstrass point. For a Weierstrass point it contains at least one higher number. (The Weierstrass gap theorem or Lückensatz is the statement that there must be gaps.)

For hyperelliptic curves, for example, we may have a function with a double pole at only. Its powers have poles of order and so on. Therefore, such a has the gap sequence

In general if the gap sequence is

the weight of the Weierstrass point is

This is introduced because of a counting theorem: on a Riemann surface the sum of the weights of the Weierstrass points is

For example, a hyperelliptic Weierstrass point, as above, has weight Therefore, there are (at most) of them. The ramification points of the ramified covering of degree two from a hyperelliptic curve to the projective line are all hyperelliptic Weierstrass points and these exhausts all the Weierstrass points on a hyperelliptic curve of genus .

Further information on the gaps comes from applying Clifford's theorem. Multiplication of functions gives the non-gaps a numerical semigroup structure, and an old question of Adolf Hurwitz asked for a characterization of the semigroups occurring. A new necessary condition was found by R.-O. Buchweitz in 1980 and he gave an example of a subsemigroup of the nonnegative integers with 16 gaps that does not occur as the semigroup of non-gaps at a point on a curve of genus 16 (see [1]). A definition of Weierstrass point for a nonsingular curve over a field of positive characteristic was given by F. K. Schmidt in 1939.

Positive characteristic

More generally, for a nonsingular algebraic curve defined over an algebraically closed field of characteristic , the gap numbers for all but finitely many points is a fixed sequence These points are called non-Weierstrass points. All points of whose gap sequence is different are called Weierstrass points.

If then the curve is called a classical curve. Otherwise, it is called non-classical. In characteristic zero, all curves are classical.

Hermitian curves are an example of non-classical curves. These are projective curves defined over finite field by equation , where is a prime power.

Notes

References

  • P. Griffiths; J. Harris (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. pp. 273–277. ISBN 0-471-05059-8.
  • Farkas; Kra (1980). Riemann Surfaces. Graduate Texts in Mathematics. Springer-Verlag. pp. 76–86. ISBN 0-387-90465-4.
  • Eisenbud, David; Harris, Joe (1987). "Existence, decomposition, and limits of certain Weierstrass points". Invent. Math. 87 (3): 495–515. doi:10.1007/bf01389240. S2CID 122385166.
  • Garcia, Arnaldo; Viana, Paulo (1986). "Weierstrass points on certain non-classical curves". Archiv der Mathematik. 46 (4): 315–322. doi:10.1007/BF01200462. S2CID 120983683.
  • Voskresenskii, V.E. (2001) [1994], "Weierstrass point", Encyclopedia of Mathematics, EMS Press

Read other articles:

Göbekli TepeGöbekli Tepe, Şanlıurfa, 2011Epoca11600 AC- 7300 AC LocalizzazioneStato Turchia Altitudine760 m s.l.m. DimensioniSuperficie500 m² ScaviData scoperta1963 Date scavi1995 OrganizzazioneIstituto archeologico germanico, dal 2006 Università di Heidelberg e di Karlsruhe ArcheologoKlaus Schmidt[1] AmministrazioneEnteMuseo di Şanlıurfa Sito webwww.gobeklitepe.info/ Mappa di localizzazione Modifica dati su Wikidata · ManualeCoordinate: 37°13′23″N 38...

 

IdentityAlbum mini karya VictonDirilis23 Agustus 2017Genre K-pop Durasi17:45Label Plan A Kronologi Victon Ready(2016) Identity(2017) From. Victon(2017) Singel dalam album Identity UnbelievableDirilis: 23 Agustus 2017 Identity adalah album mini ketiga dari grup vokal pria Korea Selatan Victon. Album mini ini dirilis pada tanggal 23 Agustus 2017 dengan singel utama Unbelievable oleh Plan A Entertainment dan didistribusikan oleh Kakao Entertainment. Latar belakang dan perilisan Album mini in...

 

Vous lisez un « bon article » labellisé en 2011. Pour les articles homonymes, voir Andronic. Andronic II Paléologue Empereur byzantin Fresque représentant Andronic II Paléologue, située au monastère de Saint-Jean-le-Précurseur près de Serrès. Règne Co-empereur : 1272 - 11 décembre 1282 Empereur : 11 décembre 1282 - 23 mai 1328 45 ans, 5 mois et 12 jours Période Paléologue Précédé par Michel VIII Paléologue Co-empereur Michel IX Paléolog...

Protein-coding gene in the species Homo sapiens PFKFB1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1K6MIdentifiersAliasesPFKFB1, F6PK, HL2K, PFRX, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1External IDsOMIM: 311790 MGI: 107816 HomoloGene: 105654 GeneCards: PFKFB1 Gene location (Human)Chr.X chromosome (human)[1]BandXp11.21Start54,932,961 bp[1]End54,998,534 bp[1]Gene location (Mouse)Chr.X chromosome (mouse)[2]BandX|X F3Star...

 

AlonsoPenemuanTanggal penemuan25 Juli 2003PenamaanPenamaan MPC73533Asal namaFernando AlonsoPenamaan alternatif2003 OC6Ciri-ciri orbitEpos May 14, 2008Aphelion2.6914838Perihelion2.0271684Eksentrisitas0.1407850Periode orbit1323.6720472Anomali rata-rata103.11055Inklinasi5.57291Bujur node menaik303.27396Argumen perihelion32.61696Ciri-ciri fisikMagnitudo mutlak (H)15.6 73533 Alonso (2003 OC6) merupakan sebuah asteroid yang terletak di sabuk asteroid yang berada di antara planet...

 

This article is about the urban area. For its central suburb, see Caloundra (suburb). For other uses, see Caloundra (disambiguation). Town in Queensland, AustraliaCaloundraSunshine Coast, QueenslandKing's BeachCaloundraCoordinates26°48′17″S 153°08′02″E / 26.8047°S 153.1338°E / -26.8047; 153.1338 (Caloundra (town centre))Postcode(s)4551Area3.2 km2 (1.2 sq mi)Time zoneAEST (UTC+10:00)LGA(s)Sunshine Coast RegionState electorate(s) C...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMA Negeri 3 Sumedang – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke...

 

Sekolah Calon Perwira Angkatan DaratLambang Sekolah Calon Perwira Angkatan DaratDibentuk8 Januari 1972Negara IndonesiaTipe unitKomando PendidikanBagian dariTNI Angkatan DaratMarkasBandung, Jawa BaratMotoBudhi Bhakti Wira UtamaSitus websecapaad.mil.idTokohKomandanMayor Jenderal TNI WindiyatnoWakil KomandanBrigadir Jenderal TNI Taufiq HanafiInspekturBrigadir Jenderal TNI Aang GunawanDirektur PendidikanBrigadir Jenderal TNI Musa David Marolop HasibuanDirektur Pengkajian dan PengembanganBrig...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dutch Twenty20 Cup – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this message) The Dutch Twenty20 Cup[1][2][3] is a Twenty20 cricket league in the Netherlands, run by the Koninklijke Nederlandse ...

v · mRégions du canton de Neuchâtel Régions Littoral Val-de-Ruz Val-de-Travers Montagnes Districts (supprimés en 2018) Boudry La Chaux-de-Fonds Le Locle Neuchâtel Val-de-Ruz Val-de-Travers Canton de Neuchâtel Communes du canton de Neuchâtel  Documentation de palette[créer] [purger] Ceci est la documentation du modèle {{Palette Régions du canton de Neuchâtel}}. Syntaxe L’utilisation de cette palette se fait par l’ajout, en fin de page, avant les porta...

 

马来亚大学University of Malaya(英語)Universiti Malaya(馬來語)老校名七州府医学堂、爱德华七世医学院、莱佛士学院校训Knowledge is the Source of Progress(英語)Ilmu Punca Kemajuan(馬來語)校訓中譯「知识乃成功之本」创办时间1905年9月28日,​118年前​(1905-09-28)[1][2]学校类型国立综合研究型大学捐贈基金$385 million(2017年8月)校监Sultan Nazrin Muizzuddin Shah ibni Almar...

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

German SS company during WWII Wiener Graben quarry at Mauthausen: the Stairs of Death; prisoners were forced to carry granite blocks, some weighing up to 50 kg (110 lb) up 186 steps. German Earth and Stone Works (German: Deutsche Erd- und Steinwerke GmbH, DEST) was an SS-owned company created to procure and manufacture building materials for state construction projects in Nazi Germany. DEST was a subsidiary company of Amtsgruppe W (Amt. W) of SS Main Economic and Administrative Offi...

 

American biochemist This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (January 2010) (Learn how and when to remove this message) Martin RodbellRodbell in 1994Born(1925-12-01)December 1, 1925Baltimore, Maryland, U.S.DiedDecember 7, 1998(1998-12-07) (aged 73)Chapel Hill, North Carolina, U.S.NationalityAmericanAlma materJohns Hopkins UniversityUniversity of WashingtonKnown forG-prote...

Historical cultural phenomenon in the U.S. Tailfins gave a Space Age look to cars, and along with extensive use of chrome became commonplace by the end of the decade. 1950s American automobile culture has had an enduring influence on the culture of the United States, as reflected in popular music, major trends from the 1950s and mainstream acceptance of the hot rod culture. The American manufacturing economy switched from producing war-related items to consumer goods at the end of World War I...

 

Men's quadruple scullsat the Games of the XXVIII OlympiadCompetitors52 from 13 nationsMedalists Nikolay SpinyovIgor KravtsovAleksey SvirinSergey Fedorovtsev  Russia David KopřivaTomáš KarasJakub HanákDavid Jirka  Czech Republic Serhiy GrinSerhiy BiloushchenkoOleh LykovLeonid Shaposhnykov  Ukraine← 20002008 → Rowing at the2004 Summer OlympicsSingle scullsmenwomenCoxless pairmenwomenDouble scullsmenwomenLwt double scullsmenwomenCoxless fourmenQ...

 

Railway station in Shangqiu, Henan, China Shangqiu商丘North station buildingGeneral informationLocation59 Zhanqian Road[1]Liangyuan District, Shangqiu, HenanChinaCoordinates34°26′39.23″N 115°39′25.26″E / 34.4442306°N 115.6570167°E / 34.4442306; 115.6570167Operated by CR ZhengzhouLine(s) China Railway: Longhai Railway China Railway High-speed: Xuzhou–Lanzhou High-Speed Railway Beijing–Shangqiu high-speed railway (under construction) Platforms16...

2020年夏季奥林匹克运动会汶莱代表團汶莱国旗IOC編碼BRUNOC汶萊国家奥林匹克理事会網站www.bruneiolympic.org(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員2參賽項目2个大项旗手開幕式:莫哈末·依沙(英语:Muhammad Isa Ahmad)(游泳)[1]闭幕式:东京奥组委志愿者[2]獎牌榜 金牌 銀牌 銅牌 �...

 

First They Killed My FatherPoster filmSutradaraAngelina JolieProduserAngelina JolieRithy PanhTed SarandosMichael VieiraSkenarioLoung UngAngelina JolieBerdasarkanFirst They Killed My Fatheroleh Loung UngPemeranSreymoch SareumKompheak PhoeungSocheata SvengDara HengKimhak MunPenata musikMarco BeltramiSinematograferAnthony Dod MantlePenyuntingXavier BoxPatricia RommelPerusahaanproduksiJolie PasDistributorNetflixTanggal rilis 18 Februari 2017 (2017-02-18) (Siem Reap) 15 September 20...