Fundamental pair of periods

In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined.

Fundamental parallelogram defined by a pair of vectors in the complex plane.

Definition

A fundamental pair of periods is a pair of complex numbers such that their ratio is not real. If considered as vectors in , the two are linearly independent. The lattice generated by and is

This lattice is also sometimes denoted as to make clear that it depends on and It is also sometimes denoted by or or simply by The two generators and are called the lattice basis. The parallelogram with vertices is called the fundamental parallelogram.

While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.

Algebraic properties

A number of properties, listed below, can be seen.

Equivalence

A lattice spanned by periods ω1 and ω2, showing an equivalent pair of periods α1 and α2.

Two pairs of complex numbers and are called equivalent if they generate the same lattice: that is, if

No interior points

The fundamental parallelogram contains no further lattice points in its interior or boundary. Conversely, any pair of lattice points with this property constitute a fundamental pair, and furthermore, they generate the same lattice.

Modular symmetry

Two pairs and are equivalent if and only if there exists a 2 × 2 matrix with integer entries and and determinant such that

that is, so that

This matrix belongs to the modular group This equivalence of lattices can be thought of as underlying many of the properties of elliptic functions (especially the Weierstrass elliptic function) and modular forms.

Topological properties

The abelian group maps the complex plane into the fundamental parallelogram. That is, every point can be written as for integers with a point in the fundamental parallelogram.

Since this mapping identifies opposite sides of the parallelogram as being the same, the fundamental parallelogram has the topology of a torus. Equivalently, one says that the quotient manifold is a torus.

Fundamental region

The grey depicts the canonical fundamental domain.

Define to be the half-period ratio. Then the lattice basis can always be chosen so that lies in a special region, called the fundamental domain. Alternately, there always exists an element of the projective special linear group that maps a lattice basis to another basis so that lies in the fundamental domain.

The fundamental domain is given by the set which is composed of a set plus a part of the boundary of :

where is the upper half-plane.

The fundamental domain is then built by adding the boundary on the left plus half the arc on the bottom:

Three cases pertain:

  • If and , then there are exactly two lattice bases with the same in the fundamental region: and
  • If , then four lattice bases have the same : the above two , and ,
  • If , then there are six lattice bases with the same : , , and their negatives.

In the closure of the fundamental domain: and

See also

References

  • Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. ISBN 0-387-97127-0 (See chapters 1 and 2.)
  • Jurgen Jost, Compact Riemann Surfaces (2002), Springer-Verlag, New York. ISBN 3-540-43299-X (See chapter 2.)

Read other articles:

Mausoleum Cihu慈湖陵寢Seorang polisi militer ROC menjaga paifang Cihu.LetakDistrik Daxi, Kota Taoyuan, TaiwanDibangun1975Dibangun untukChiang Kai-shekArsitekYang Cho-cheng Mausoleum Cihu (Hanzi: 慈湖陵寢; Pinyin: Cíhú Língqǐn), yang secara resmi dikenal sebagai Mausoleum Kepala Presiden Chiang (Hanzi: 先總統 蔣公陵寢; Pinyin: Xiān Zǒngtǒng Jiǎnggōng Língqǐn) atau Mausoleum Chiang Kai-shek adalah tempat peristirahatan temporer Presiden Chiang Kai-she...

MesidahKecamatanNegara IndonesiaProvinsiAcehKabupatenBener MeriahPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri11.17.09 Kode BPS1117061 Luas286,83 km²[1]Desa/kelurahan15 Kecamatan Mesidah, Kabupaten Bener Meriah Mesidah adalah sebuah kecamatan di Kabupaten Bener Meriah, Aceh, Indonesia, hasil pemekaran dari kecamatan Syiah Utama, dibentuk berdasarkan Qanun Nomor 5 tahun 2007,[2] Pusat pemerintahan berkedududkan di gampong Wer Tingkem.&...

селище Луначарівка Луначаровка Країна  Росія Суб'єкт Російської Федерації Воронезька область Муніципальний район Терновський район Поселення Киселинське сільське поселення Код ЗКАТУ: 20254820005 Код ЗКТМО: 20654420121 Основні дані Населення 81 Поштовий індекс 397119 Географічні к

Anglo-americano População total Anglo-americano25,926,451[1] Regiões com população significativa Estados Unidos(predominantemente Nordeste, Nova-York, Califórnia, Corredor Mórmon, Michigan, Utah, Pensilvânia, Tennessee, Mississippi, Kentucky e Nova Inglaterra, minorias no Sul) 7,6% da população [2][3] Línguas Inglês americano · Inglês britânico Religiões Cristianismo (maioritariamente Anglicanos ou Episcopais Norte-Americanos, Protestantismo ou Catolicismo Romano...

العلاقات الليختنشتانية الهايتية ليختنشتاين هايتي   ليختنشتاين   هايتي تعديل مصدري - تعديل   العلاقات الليختنشتانية الهايتية هي العلاقات الثنائية التي تجمع بين ليختنشتاين وهايتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي

Pronkende witte pauw Balts is expressiegedrag bij dieren om partners aan te trekken en over te halen tot de paring. Veel diersoorten hebben in de paartijd speciale gedragingen om een partner te vinden. Vaak wordt er met uiterlijke kenmerken gepronkt, worden er speciale geluiden gemaakt of worden er geschenken aan de partner aangeboden. Vooral bij vogels is baltsgedrag vaak sterk ontwikkeld. De balts vergroot de bereidheid tot paring, tijdens de balts neemt de seksuele motivatie toe. Tegelijke...

غاز الماء (بالإنجليزية: Water gas)‏ هو أحد أنواع غاز التصنيع، الذي يحتوي على أول أكسيد الكربون والهيدروجين. وهو ناتج مفيد ولكنه يتطلب التعامل معه بحذر بسبب خطر التسمم بأول أكسيد الكربون. والغاز يصنع بواسطة تمرير البخار فوق فحم الكوك الأحمر الساخن. و المعادلة كالتالي: كاربون + ما...

Israeli master franchise of the fast food restaurant chain McDonald's This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (August 2017) (Learn how and when to re...

Italian shot putter Zane WeirWeir in 2022Personal informationNational teamItaly (2021- ): 4 caps 4Born (1995-09-07) 7 September 1995 (age 28)Amanzimtoti, South Africa[1]SportSportAthleticsEventShot putClub Enterprise Sport & Service G.A. Fiamme Gialle (2022- )[2] Coached byPaolo Dal Soglio[3]Achievements and titlesPersonal bests Shot put outdoor: 22.15 m (2023) Shot put indoor: 22.06 m (2023) NR Medal record Men's athletics Representing  Italy Europe...

This article is about the Todd Agnew album. For the Sherlock Holmes novel, see Sherlock Holmes: The Breath of God. 2001 live album by Todd AgnewBreath of GodLive album by Todd AgnewReleased2001Recorded2001 at The Journey in Alvin, TXTodd Agnew chronology Breath of God(2001) Grace Like Rain(2003) Breath of God is an independently released album by Todd Agnew. The album was recorded in 2001 live at The Journey in Alvin, TX. The album also features the songs Breath of God, Awesome God (R...

ブラジル出身のメジャーリーグベースボール選手一覧。太字は現役選手、その他は引退選手及びメジャーリーグ以外のリーグでプレーしている選手。同名の選手の場合は右に現役時代の主な守備位置、現役年数の順で示す。 目次 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z G 選手名 (日本語) 選手名 初年度 最終年度 ルイス・ゴハラ Luiz Gohara 2017 2018 ヤン・ゴームズ Yan Gomes 2012...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zoop TV series – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) Dutch TV series or program ZoopZoop CastGenreFamilyComedyDramaWritten bySander DonkerJohan NijenhuisDirected byJohan Nijenhuis...

Biblical figure Labanלָבָן‎Laban clashing with Jacob (1873)BornPaddan Aram, Aram-Naharaim(present-day Harran, Turkey)DiedPaddan Aram, Aram-Naharaim(present-day Harran, Turkey)SpouseAdinahChildren Leah (daughter) Rachel (daughter) ParentBethuel (father)Relatives Rebecca (sister) Jacob (nephew, son-in-law) Joseph (great-nephew, grandson) Laban and Jacob make a covenant together, as narrated in Genesis 31:44–54 Laban (Aramaic: ܠܵܒܵܢ; Hebrew: לָבָן‎‎, Modern:...

Балісонг у складеному та відкритому положенні. Балісонг (таг. Balisong), також відомий як ніж-метелик — складаний ніж, в якому клинок у складеному положенні схований у руків'ї, розділеному вздовж на дві частини. Кожна з частин руків'я шарнірно з'єднана з хвостовиком ножа та �...

BlitzBasicDeveloper(s)Blitz ResearchWritten inCompiled to C++, but the languages are dialects of BASICOperating systemAmigaOSMicrosoft WindowsAvailable inEnglishTypeGame creation systemLicensezlib licenseWebsitewww.blitzbasic.com[dead link] Blitz BASIC is the programming language dialect of the first Blitz compilers, devised by New Zealand-based developer Mark Sibly. Being derived from BASIC, Blitz syntax was designed to be easy to pick up for beginners first learning to program. The ...

British writer Josephine Pullein-ThompsonThe sisters, Josephine on the left, c. 1942BornJosephine Mary Wedderburn Pullein-Thompson(1924-04-03)3 April 1924Died19 June 2014(2014-06-19) (aged 90)Other namesJosephine MannOccupationWriterKnown forBooks about ponies Josephine Mary Wedderburn Pullein-Thompson MBE (3 April 1924 – 19 June 2014), sometimes known as Josephine Mann, was a British writer known for her pony books. She was a leading member of the Pony Club and PEN Internati...

Village and civil parish in West Yorkshire, England Human settlement in EnglandRawdonSt Peter's Church, RawdonRawdonShow map of LeedsRawdonLocation within West YorkshireShow map of West YorkshireOS grid referenceSE421439Civil parishRawdonMetropolitan boroughCity of LeedsMetropolitan countyWest YorkshireRegionYorkshire and the HumberCountryEnglandSovereign stateUnited KingdomPost townLEEDSPostcode districtLS19Dialling code0113PoliceWest YorkshireFireWest York...

Governing body of ice hockey in England and Wales EnglandAssociation nameEnglish Ice Hockey AssociationIIHF CodeENGIIHF membershipNot an IIHF national memberwww.eiha.co.uk The old logo of the EIHA The English Ice Hockey Association (EIHA) is the governing body of ice hockey in England and Wales. It was formed in 1982 and featured around 60 teams. EIHA is one of several bodies regulating ice hockey in the United Kingdom, along with Scottish Ice Hockey (SIH), the Northern Ireland Ice Hockey Ass...

Spanish military personnel León de PallejasBorn1816Seville, Andalusia, SpainDiedJuly 18, 1866 (aged 50)Ñeembucú, ParaguayAllegiance Spain Carlists UruguayBranch Spanish Army National Army of UruguayYears of service1833 — 1866RankGeneralUnitFlorida BattalionBattles/warsFirst Carlist WarArgentine Civil WarsUruguayan Civil WarParaguayan War Battle of Yatay Siege of Uruguaiana Battle of Estero Bellaco Battle of Tuyutí Battle of Boquerón † José Pons de Ojeda (1816 – ...

Historic church in California, United States United States historic placeFirst Presbyterian Church Sanctuary BuildingU.S. National Register of Historic Places Show map of Oakland, CaliforniaShow map of CaliforniaShow map of the United StatesLocation2001 Santa Clara Ave., Alameda, CaliforniaCoordinates37°46′11″N 122°15′0″W / 37.76972°N 122.25000°W / 37.76972; -122.25000Area0.1 acres (0.040 ha)Built1904 (1904)ArchitectHenry H. MeyersArchitectural...