Тунельна долина

Фінгер-Лейкс штату Нью-Йорк на південь від озера Онтаріо — заповнені водою тунельні долини.

Тунельна долина — велика, довга, U-подібна долина, яка початково утворилась під льодовиком поблизу межі континентальних льодовикових щитів, таких, який зараз покриває Антарктиду і раніше охоплювали частини всіх континентів протягом останніх льодовикових періодів.[1]

Відомі тунельні долини довжиною до 100 км, шириною до 4 км і 400 метрів у глибину.

Тунельні долини утворювались внаслідок підльодовикової ерозії скельного/осадового підґрунтя водою і слугували підльодовиковими шляхами дренажу великих обсягів талої води. Їх поперечні перерізи демонструють круті стіни, схожі на стіни фіордів, і пласкі днища, характерні для підлідної льодовикової ерозії.

Зараз, після відступу льодовиків, вони виглядають як сухі долини, озера, западини моря і замулені осадами території. Якщо вони заповнені осадами, їх нижні шари заповнені в першу чергу льодовиковими, гляциофлювіальними або льодовиково-озерними (англ. glaciolacustrine) осадами, доповненими верхніми шарами помірного заповнювача.[2] Вони були знайдені в районах, раніше покритих льодовиками, в тому числі в Африці, Азії, Північній Америці, Європі, Австралії та в акваторії Північного моря, Атлантичного океану і у водах поблизу Антарктиди.

У фаховій літературі, тунельні долини з'являються під кількома назвами, включаючи: тунельні канали, підльодовикові долини, крижані дороги, зміїні кільця і лінійні розрізи.

Важливість

Вивчення тунельних долин важливо, тому що:

  • вони слугують як маркер областей з потенціалом для ефективної розвідки нафти, наприклад в Африці;
  • їх скельні кордони та заповнення льодовиковими осадами робить їх ефективними водоносними горизонтами у багатьох регіонах;
  • інженерам ґрунтів необхідно враховувати варіації, які вони мають, при проходці тунелів та облаштуванні фундаментів;
  • вони слугують один з кількох маркерів, що позначають кордони колишнього зледеніння.

Тунельні долини відіграють корисну роль у визначенні багатих на нафту територій в Аравії і Північній Африці. Відкладення Верхнього Ордовика–Нижнього Силуру  містять багатий вуглецем шар чорних сланців приблизно 20 метрів товщиною. У цих сланцевих родовищ знаходиться близько 30 % світових запасів нафти. Хоча походження цих родовищ знаходиться в стадії дослідження, було встановлено, що сланці часто розташовані згори льодовикових і льодовиково-морських відкладень, що утворилися в ~445 млн років тому під час  Хірнантського зледеніння. Виникнення сланців було пов'язано зі збагаченням талими льодовиковими водами морського мілководдя поживними речовинами. Тому наявність тунельних долин вважається ознакою присутності нафти в цих районах.[3]

Через тунельні долини відбувається скид значної частини всіх талих вод з льодовиків. Дренаж талої води впливає на потік льодовикової криги, що важливо для розуміння тривалості льодовикових–міжльодовикових періодів, а також допомагає у виявленні циклічності льодовиків, проблеми, яка є важливою для дослідження палео-навколишнього середовища.[4]

Тунельні долини зазвичай прокладені ерозією в скелі і наповнені уламками різних розмірів, принесеними льодовиками. Ця конфігурація робить їх відмінними для збору і зберігання води. Тому вони грають важливу роль які водоносні горизонти на більшій частині Північної Європи, Канади і США.

Характеристики

Малюнок данською демонструє поперечний розріз тунельної долини, заповненої відкладами після ерозії скельної основи.
Приховані, відкриті та частково заповнені

Тунельні долини спостерігались яв відкриті долини або як долини, частково чи повністю поховані під шаром осадів, часто принесеним льодовиками. Долини можуть бути вирізані у скельній основі, піщаній чи глинистій.[1]

Частина тунельної долини може підніматись вгору, адже вода могла йти вгору під тиском у фактично закритій трубі, якою такі долини були під льодовиками. Наприклад у Доггерланді (затонулій суші, яка зараз є частиною дна Північного моря) існують заповнені тунельні долини, які текли з півночі на південь через заглиблення Зовнішнього Сільверпіта.[5]

Розміри

Тунельні долині різняться за глибиною та довжиною каналу; наприклад у Данії відомі долини шириною 0,5-4 км та довжиною 50–350 метрів. Їх глибина та висота дна над рівнем моря також змінюється вздовж їх напрямку, деколи утворюючи заглиблення, які є значно глибшими, ніж секції вгору або вниз течії від них, вони вирізані у скельній породі, а їх сторони часто асиметричні[1].

Тунельні долини часто утворюють відносно прямі сегменти, паралельні і незалежні один від одного. Маршрут тунельної долини може періодично перериватись; цей розрив може включати перешийок піднятого ескера, що вказує на перебіг каналу певну відстань через кригу. Менші секції переважно мають 5-30 км у довжину; у деяких випадках секції формують більший патерн безперервного каналу, який складається зі смужок заглиблень, які можуть сягати довжини 70-100 км[1].

Структура

Верхня секція — секція, найдальше заглиблена у льодовик — складається з системи рукавів, схожої на анастомозні патерни рукавів у верхній течії річок (на противагу дендритним патернам). Тунельні долини часто раптово починаються і закінчуються. Вони мають витягнуті профілі з найбільшою глибиною та найбільшою площею перетину у середині потоку. Долини закінчуються через відносно коротку відстань піднятими віялами витоку на кордоні криги льодовика[1] та відступними моренами. Тунельні долини часто розташовані паралельно, у регіонах, які мають ознаки льодовикової ерозії внаслідок абразії та можуть мати льодовикову штриховку та баранячі лоби. У Мічигані канали тунельних долин дещо розходяться, з середньою відстанню між ними у 6 км та стандартним відхиленням у 2,7 км.[6]

Тунельні долини часто перетинають градієнт ділянки — і в результаті їх можуть перетинати сучасні мережі струмків. Наприклад, притоки річки Каламазу перетинають приховану тунельну долину, заповнену кригою та уламками, майже під прямим кутом.[7] Тунельні долини, утворені наступними заледеніннями, можуть перетинати одна одну[8].

Озера Каварта в Онтаріо сформувались у тунельних долинах Пізнього Вісконсинського заледеніння. Потік води був з верхнього правого кута у нижній лівий кут фото. Також тут існують приховані тунельні долини, які можна побачити при уважному розгляді за відмінністю рослинного покрову.

Залишки тунельних долин часто заповнені витягнутими озерами, сформованими зникаючими ріками. Часто вони також мають ознаки пізніших відкладів, таких як ескери.[6]

Свідчення механізмів ерозії

За результатами наявних досліджень, основним джерелом ерозії тунельних долин є ерозія від потоку талої води. Одним з джерел таких потоків є періодичні єкуллойпи від підльодовикових озер; приклади цього спостерігались в Антарктиді. Хоча існують свідчення і крижаної ерозії, наприклад льодовикова штриховка скельної основи, вони спостерігаються лише у найширших тунельних долинах та вважаються другорядними за впливом.[1]

Підльодовикове розташовування каналів таких долин переважно орієнтоване паралельно до ліній потоку льодовикової криги — тобто вони простягаються від ділянок з більш товстим льодовиковим щитом до ділянок з тоншим шаром криги. Вони можуть мати зворотні градієнти (нахил вгору), які є наслідком руху талої води під тиском через перепони — хребти та пагорби скельної основи льодовика.[9]

Тунельні долини можуть формуватись під дуже товстим шаром льодовикової криги — приклади відомі на дні озера Верхнє та на дні океану біля Антарктиди.[1]

Теорії формування тунельних долин

Хоча існує загальний консенсус про важливість талої води для утворення тунельної долини, теорії мають різні погляди на її роль:

Теорія сталого стану, запропонована Бултоном та Хіндмаршем.

Вони припускають, що тунельні долини формуються у нещільних відкладах, коли тала вода під тиском тече через спочатку вузький підльодовиковий канал. При поступовому вимиванні осадів талою водою, крига льодовика під власною вагою осідає у цей канал, розширюючи і заглиблюючи його механізмом позитивної зворотної реакції, що створює тунельну долину.[10]

Ця теорія фактично є розширенням на більші масштаби відомих механізмів руху талих вод льодовиків помірних та субполярних широт. У таких льодовиках, тала вода рухається струмками по поверхні льодовика поки не знайде вертикальну шахту (млин, фр. moulin) у ньому. Через неї вона потрапляє під льодовик, де приєднується до підльодовикової води, утвореної геотермальним теплом. Частина води просочується у підземні водоносні горизонти під льодовиком, а надлишок рухається або каналами, які створені ерозією у скельній основі або осадах під льодовиком (так звані канали Ная[11]), або вгору і вбік каналами у кризі льодовика (так звані канали Ротлісбергера), і врешті витікає на кінці льодовика[12].

Хоча ця теорія сталого стану приваблива масштабуванням теорії формування каналів Ная у осадах, її слабкість в тому, що вона передбачає формування тунельних долин лише потоком води у неконсолідованих осадах, як зазначено вище, починаючи з вузького каналу з подальшою деформацією криги під власною вагою та формуванням все більшої тунельної долини. Однак теорія сталого стану не пояснює ерозії скельної основи, яка широко спостерігається.[13]

Ерозія внаслідок єкуллойпу.

Петровський запропонував теорію, що у деяких випадках льодовикові щити можуть мати холодну основу — коли вони наповзають на замерзлу землю (вічну мерзлоту) і їх основа над нею також замерзає на вічну мерзлоту. Тала вода накопичується позаду завершення цієї замерзлої криги доки не утвориться достатній тиск для прориву криги; тоді утворюється катострофічний потік талої води (наприклад ісландські єкуллойпи), який пробиває тунельну долину у скельній чи осадовій основі.[14]

Існують свідчення періодичності витоків талої води[15]; їх причиною може бути таким процес: під дією гравітації тала вода просочується вниз і збирається у басейнах під кригою, крига поступово піднімається, площа та об'єм підльодовикового озера зростають, — врешті решт піднімається достатньо криги, щоб відкрити шлях (канал) до витоку води з-під льодовика. Але якщо попереднього каналу не існувало, потік води спочатку утворює широкий єкуллойп, який може мати ширину до десятків кілометрів, але в міру потоку він еродує скельну основу та кригу згори, утворюючи канал, а зниження тиску на кригу льодовика опускає його на попередню поверхню, що у сукупності закриває широкий потік та спрямовує його залишки у новоутворений канал. Напрямок каналу переважно визначається товщиною криги над потоком, і лише в другу чергу — градієнтом основи, тому потік може «текти вгору», коли тиск криги спрямовує воду у регіони меншої товщини льодовика доки вона не потрапить на його поверхню або не знайде інший шлях назовні[16]. Відповідно конфігурація тунельних долин різних заледенінь дає уявлення про товщину льодовика на час їх утворення, особливо якщо початковий рельєф поверхні під льодовиком не був різноманітним.[4][9]

За аналізом Петровського, річний типовий обсяг накопичення талої води 642 млн м³ виливався через пов'язану з ним тунельну долину менше ніж за 48 годин.[14] Уламки, які знаходять у тунельних долинах, часто складаються з необроблених валунів — що вказує на великі швидкості потоку та дуже ерозійне середовище.

Ерозія вгору по льодовику

Вінгфілд запропонував теорію, що тунельні долини утворюються поступово, коли верхівя долини поступово відступає вгору в напрямку витоку льодовика у процесі дегляціації.[17]

Спільні риси теорій тунельних долин

Стрічкове озеро у Польщі сформувалось як тунельна долина. Зверніть увагу на різну ширину та перетинки між сегментами долини. Також на фото видно інші, заповнені осадами, тунельні долини (два менші озера справа)

Спільною для всіх теорій є підльодовикова тала вода; її потік є ключем для розуміння формування каналів. Тала вода може утворюватись на поверхні льодовика, під ним, або і там і там; текти вона також може по поверхні чи під льодовиком, але риси їх потоку будуть відрізнятись. Надльодовиковий потік подібних до потоку у всіх поверхневих середовищах — вода тече з більш високої точки до нижчої під дією гравітації. Підльодовикова вода (яка утворилась таненням в основі льодовика чи просочилась з поверхні під дією гравітації) збирається в основі льодовика у басейнах (карманах), над якими сотні метрів криги. Гідравлічний тиск води, яка збиратиметься у такому підльодовиковому озері, зростатиме в міру просочення води згори через кригу поки не стане достатньо великим, щоб пробити шлях через кригу або підняти її над собою.[4][9]

Періодичні раптові витоки підльодовикової води спостерігались при русі підльодовикової води між підльодовиковими озерами під Східно-Антарктичним льодовиковим щитом. Дані супутників показали, як загальний витік об'ємом 2 км³ просунувся на ~260 км за період менше року. Коли потік зменшився, крига від власною вагою опустилась на тунель і підземне озеро знову закрилось.[15] Була створена модель потоку, яка показала можливість утворення каналів у кризі та/або осадах, а саме, що геометрія криги та скельної основи включала секції, які б заморозили і заблокували потік, якщо б там не було ерозії осадового шару під льодовиком з утворенням каналу для подальшого потоку води не в кризі, а в цьому шарі.[18] При поєднанні даних цього витоку та даних аналізу ісландських єкуллойпів дає певні підстави для поєднання гіпотези єкуллойпів з окремими рисами теорії сталого стану.

Процес заповнення після ерозії

Тунельні долини мають схожі характеристики незалежно від того, утворились вони на суші чи у підводному середовищі, через те, що вони формуються дією великого тиску води під товстим льодовиковим щитом, який присутній і у підводному середовищі.[13]

У залежності від типу дегляціації, тунельні долини можуть лишатись відкритими, частково або повністю заповненими. Заповнені тунельні долини часто є добрими резервуарами для водоносних горизонтів або нафти, адже долини формувались на межі криги льодовика і більш грубі валуни пісковиків та інших осадових порід при його відступі осідали перші і розташовані по зовнішніх межах тунельної долини — на дні та по боках. А коли крига достатньо відступала, починали відкладатись більш дрібні осади водного середовища (озеро, струмок, припливні чи морські тощо) в залежності від товщі води перед льодовиком.[13]

Географічний розподіл

Пейзажі з тунельними долинами острова Зеландія, Данія.

Тунельні долини, утворені льодовиками, виявлені на кожному континенті.

Африка

Тунельні долини, які пов'язують з заледенінням Пізнього Ордовика, відомі у країнах північної Африки, у тому числі Лівії.[19] Ці масштабні заповнені канали з пісковика є вражаючою рисою льодовикових осадів північного кордону Гондвани. Вони мають розміри 10-200 м у глибину та 500-3000 метрів у ширину. Тунельні долини вирізані к скельній основі та прослідковуються у довжину 2-30 км. У Мавританії, у західній Сахарі, дослідження заповнених тунельних долин показало їх льодовикове походження на березі та континентальному шельфі Гондвани та заповнення матеріалом, принесеним таненням льодовиків.[20]

У північній частині провінції Кейп, ПАР, знайдена система тунельних долин Пермсько-вугільного періоду.[21]

Антарктика

В Антарктиці формування тунельних долин спостерігається у поточний час під льодовиковим щитом.[4][9]

Азія

Під час пізнього Ородовика, східна Гондвана була вкрита льодовиковими щитами. Внаслідок цього в Йорданії та Саудівській Аравії існують великі структури заповнених тунельних долин.[3]

Австралія

Відкриті золотодобувні кар'єри поблизу Калгурлі, Західна Австралія, відкрили широку мережу еродованих льодовиками долин, заповнених валунною глиною та глинистими сланцями, які були прорізані льодовиковим щитом Пілбара пізнього Палеозою.[22]

Європа

Тунельні долини та пов'язані риси, спричинені льодовиками, були знайдені у таких країнах, як Білорусь, Велика Британія,Данія, Німеччина, Бельгія, Польща, Росія, Україна, північна Франція, Нідерланди, Фінляндія, Швеція та Норвегія.[23] Їх детально досліджували у Данії, північній Німеччині та північній Польщі, де товстий льодовиковий щит останнього та попередніх заледенінь, стікаючи з гір Скандинавії, почав підніматися по північно-європейському схилу за рахунок висоти накопичення криги над Скандинавією. Їх розташування вказує на напрямок стікання криги на час формування таких долин.[1][24] Багато тунельних долин знайдено у Великій Британії (наприклад, Чеширі)[14][25] та на дні Північного моря.[26]

Прикладами озер, які сформувались у тунельних долинах, є Руппінер-Зее (Східний Прігніц-Руппін, Бранденбург), Вербеллінзее та Швілохзее, всі у Німеччині.

Північна Америка

Озеро Оканаган — велике, глибоке стрічкове озеро у долині Оканаган, Британська Колумбія, яке заповнило тунельну долину Оканаганського рукава Кордильєрського льодовикового щита. Озеро має 135 км у довжину, 4-5 км у ширину та площу дзеркала поверхні 351 км².[27]

У північному Айдахо та Монтані є свідчення формування тунельних долин під Пурсельським та Флетхедським рукавами Кордильєрського льодовикового щита.[28]

Тунельні долини у південно-східній Альберті утворюють зв'язану, розгалужену мережу з Сейдж Крік, Лост Рівер та Мілк Рівер і в цілому стікають на південний схід[29].

Батиметрична карта східної частини озера Верхнє[30][31], яка показує затоплені тунельні долини[32][33].

Тунельні долини також відомі у штатах Міннесота, Вісконсин та Мічиган на кордонах Лаврентійського льодовикового щита.[34] Прикладами тунельних долин у скельній основі є водоспади річки Воррен і декілька заповнених долин, які поховані під шарами осадів від льодовиків, які їх створили, але які можна прослідкувати у Чейн-оф-Лейкс в Міннеаполісі та озерах і сухих долинах у Сент-Полі (все — Міннесота).

Озера Каварта, Онтаріо, утворились у період Пізнього Вісконсинського заледеніння. Тала вода з Ніагарського уступу текла тунельними долинами під кригою та сформувала канал у напрямку захід-схід між головним Лаврентійським льодовиковим щитом та масою криги у долині озера Онтаріо.[35]

Каньйон Седар Крік у окрузі Аллен, Індіана, також є тунельною долиною. Це дуже вузький, прямий каньйон 15-30 метрів глибини, через який проходить частина нижньої течії Седар Крік, найбільшої притоки річки Сент-Джозеф.

У Лаврентійському каналі біля берегів східної Канади були виявлені численні тунельні долини, які починаються з затопленої долини річки Святого Лаврентія, яка також має льодовикове походження. Сейсмічні дослідження наповнень тунельних долин вказують на їх різний вік. Наймолодші утворились невдовзі після Останнього льодовикового максимуму; вони є результатом ерозії підльодовиковою водою східного Шотландського шельфу поруч з берегом Нової Шотландії і починаються від Лаврентійського каналу на південь від протоки Кабота. Сейсмічні профілі також виявили поховані під товстим шаром осадів пост-міоценові канали, деякі з яких розташовані на глибині 1 100 метрів нижче сучасного рівня моря, перетинають східну частину Лаврентійського каналу; висунуто припущення, що ці канали також можуть бути тунельними долинами. Сейсмічні профілі також виявили тунельні долини на банках Банкеро та Сейбл.[36]

Південна Америка

Льодовик Періто-Морено розташований на півдні Південно-Патагонського льодовикового поля і закінчується у озері Архентіно на 50°30′ пд. ш. 73°6′ зх. д. / 50.500° пд. ш. 73.100° зх. д. / -50.500; -73.100. Він ділить це озеро на канал Лос Темпанос та рукав Ріко, перекриваючи канал льодовиковою греблею. Озеро Архентіно періодично прориває раптовими повенями дамбу, спочатку витікаючи через тунель, крижаний дах якого обвалюється і утворіється відкритий канал.[37]

Розподіл у часі

В історії Землі відомо 5 льодовикових ер; зараз Земля перебуває у Четвертинному зледенінні. Ідентифіковано існування тунельних долин у 4 з 5 ер.

Назва Час (млн.р. тому) Період Ера Регіони поширення тунельних долин
Четвертинне зледеніння 2,58 — поточний час Неогеновий період Кайнозойська ера Тунельні долини у північній Азії, Європі, Північній Америці та Антарктиці
Льодовикова ера Карру 360–260 Кам'яновугільний період та Пермський період Палеозойська ера Відомі тунельні долини у свідченнях льодовиків Карбону та Пермського періоду в Австралії[13][22] та Південної Африки[21].
Андо-Сахарський 450–420 Ордовик та Силур Палеозойська ера Тунельні долини у Йорданії, Саудівській Аравії, Мавританії, Малі, Марокко, Алжирі, Лівії, Тунісі, Нігері, Чаді та Судані[13].
Кріогеній 800–635 Кріогеній Неопротерозой Відомі тунельні долини у страті кріогенію в Омані та Мавританії.[13]
Гуронське зледеніння 2100–2400 Сидерій та Рясій Палеопротерозой

Див. також

Примітки

  1. а б в г д е ж и Jørgensen, Flemming; Peter B.E. Sandersen (June 2006). Buried and open tunnel valleys in Denmark—erosion beneath multiple ice sheets. Quaternary Science Reviews. 25 (11–12): 1339—1363. Bibcode:2006QSRv...25.1339J. doi:10.1016/j.quascirev.2005.11.006. 
  2. Durst Stucki, Mirjam; Regina Reber and Fritz Schlunegger (June 2010). Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland. Swiss Journal of Geosciences. Springer (Online First). 103 (3): 363—374. doi:10.1007/s00015-010-0042-0. 
  3. а б Armstrong, Howard A.; Geoffrey D. Abbottb, Brian R. Turnera, Issa M. Makhloufc, Aminu Bayawa Muhammadb, Nikolai Pedentchoukd and Henning Peterse (15 березня 2009). Black shale deposition in an Upper Ordovician–Silurian permanently stratified, peri-glacial basin, southern Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology. Copyright © 2008 Elsevier B.V. 273 (= 3–4): 368—377. doi:10.1016/j.palaeo.2008.05.005. 
  4. а б в г Smellie, John L.; J.S. Johnson, W.C. McIntosh, R. Esser, M.T. Gudmundsson, M.J. Hambrey, B. van Wyk de Vries (7 квітня 2008). Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology. 260 (1–2): 122—148. doi:10.1016/j.palaeo.2007.08.011. 
  5. Vincent Gaffney, Kenneth Thomson, Simon Finch, Mapping Doggerland: The Mesolithic Landscapes of the Southern North Sea, University of Birmingham, 2007
  6. а б Fisher, Timothy G.; Jol, Harry M.; Boudreau, Amber M. (November 2005). Saginaw Lobe tunnel channels (Laurentide Ice Sheet) and their significance in south-central Michigan, U.S. Quaternary Science Reviews. 24 (22): 2375—2391. Bibcode:2005QSRv...24.2375F. doi:10.1016/j.quascirev.2004.11.019. 
  7. Kozlowski, Andrew L.; Alan E. Kehew and Brian C. Bird; Bird, Brian C. (November 2005). Outburst flood origin of the Central Kalamazoo River Valley, Michigan, USA. Quaternary Science Reviews. Published by Elsevier Ltd. 24 (22): 2354—2374. Bibcode:2005QSRv...24.2354K. doi:10.1016/j.quascirev.2005.03.016. 
  8. «Principles of glacier mechanics»; Roger LeB. Hooke; 2nd Edition; 2005; Cambridge
  9. а б в г Shaw, J; A. Pugin, R.R. Young; Young, R. R. (15 December 2008). A meltwater origin for Antarctic shelf bedforms with special attention to megalineations. Geomorphology. 102 (3–4): 364—375. Bibcode:2008Geomo.102..364S. doi:10.1016/j.geomorph.2008.04.005. 
  10. Boulton, G.A.; R.C.A. Hindmarsh (27 January 1987). Sediment deformation beneath glaciers; rheology and geological consequences. Journal of Geophysical Research. American Geophysical Union. 92 (B2): 9059—9082. Bibcode:1987JGR....92.9059B. doi:10.1029/JB092iB09p09059. 
  11. Невеликі канали Ная названі на часть британського фізика Джона Ная (англ. John Nye).
  12. Eyles, Nick K (1 August 2006). The role of meltwater in glacial processes. Sedimentary Geology. 190 (1–4): 257—268. Bibcode:2006SedG..190..257E. doi:10.1016/j.sedgeo.2006.05.018. 
  13. а б в г д е Le Heron, Daniel Paul; Jonathan Craig and James L. Etienne; Etienne, James L. (April 2009). Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East. Earth-Science Reviews. © 2009 Elsevier B.V. 93 (3–4): 47—76. Bibcode:2009ESRv...93...47L. doi:10.1016/j.earscirev.2009.02.001. 
  14. а б в Piotrowski, Jan A. (1997). Subglacial hydrology in north-western Germany during the last glaciation: groundwater flow, tunnel valleys and hydrological cycles. Quaternary Science Reviews. 16 (2): 169—185. Bibcode:1997QSRv...16..169P. doi:10.1016/S0277-3791(96)00046-7. 
  15. а б Wingham, Duncan J.; Martin J. Siegert, Andrew Shepherd and Alan S. Muir; Shepherd, Andrew; Muir, Alan S. (20 April 2006). Rapid discharge connects Antarctic subglacial lakes. Nature. 440 (7087): 1033—1036. Bibcode:2006Natur.440.1033W. doi:10.1038/nature04660. PMID 16625193. 
  16. Оскільки спочатку піднімаються ділянки відносно більш тонкого шару криги, вода може рухатись вгору по підльодовиковій поверхні, якщо там шар криги тонший. Аналогією може слугувати водяний матрас — вода рухається під тиском криги так само як вода у матраці рухається під тиском маси тіла, яке на нього лягає.
  17. Wingfield R.; The origin of major incisions within the Pleistocene deposits of the North Sea (1990) Marine Geology, 91 (1–2), pp. 31–52.
  18. Carter, Sasha P.; Donald D. Blankenship, Duncan A. Young. Matthew E. Peters, John W. Holt, and Martin J. Siegert; Young, Duncan A.; Peters, Matthew E.; Holt, John W.; Siegert, Martin J. (15 June 2009). Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial lake discharge. Earth and Planetary Science Letters. Copyright © 2009 Elsevier B.V. 283 (1–4): 24—37. Bibcode:2009E&PSL.283...24C. doi:10.1016/j.epsl.2009.03.019. 
  19. Le Heron, D.P.; H.A. Armstrong, C. Wilson, J.P. Howard, L. Gindre; Wilson, C.; Howard, J.P.; Gindre, L. (Available online 14 November 2009). Glaciation and deglaciation of the Libyan Desert: The Late Ordovician record Sedimentary Geology. Sedimentary Geology. Copyright © 2009 Elsevier B.V. 223: 100. Bibcode:2010SedG..223..100L. doi:10.1016/j.sedgeo.2009.11.002. 
  20. Ghienne, Jean François; John Shaw and Kenneth I. Skene (July 1998). Large-scale channel fill structures in Late Ordovician glacial deposits in Mauritania, western Sahara. Sedimentary Geology. © 1998 Elsevier Science B.V. 119 (1–2): 141—159. Bibcode:1998SedG..119..141G. doi:10.1016/S0037-0738(98)00045-1. 
  21. а б J. N. J. Visser (1988). A Permo-Carboniferous tunnel valley system east of Barkly West, northern Cape Province. South African Journal of Geology; September 1988; v. 91; no. 3. p. 350—357.
  22. а б Eyles, Nicholas; Peter de Broekert (1 July 2001). Glacial tunnel valleys in the Eastern Goldfields of Western Australia cut below the Late Paleozoic Pilbara ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology. 171 (1–2): 29—40. doi:10.1016/S0031-0182(01)00265-6. 
  23. Baltrūnas, Valentinas; Kęstutis Švedasb and Violeta Pukelytėa; Pukelytė, Violeta (1 January 2007). Palaeogeography of South Lithuania during the last ice age. Sedimentary Geology. Elsevier B.V. 193 (1–4): 221—231. Bibcode:2007SedG..193..221B. doi:10.1016/j.sedgeo.2005.09.024. 
  24. Smolska, Ewa (1 September 2007). Development of gullies and sediment fans in last-glacial areas on the example of the Suwałki Lakeland (NE Poland). CATENA. 71 (1): 122—131. doi:10.1016/j.catena.2006.10.009. 
  25. Livingstone, Stephen J.; David J.A. Evans; Colm Ó Cofaigh; Jonathan Hopkins; Borodavko, Pavel; Morvan, Hervé (Corrected Proof, Available online 24 November 2009). The Brampton kame belt and Pennine escarpment meltwater channel system (Cumbria, UK): Morphology, sedimentology and formation. Proceedings of the Geologists' Association, in Press. 70: 24. Bibcode:2010GPC....70...24C. doi:10.1016/j.gloplacha.2009.11.005. 
  26. Benn, D.I. and Evans, D.J.A.; Glaciers & Glaciation (1998) Oxford University Press, Inc. ISBN 0-340-58431-9 Fig. 9.27
  27. Lesemann, Jerome-Etienne; Tracy A. Brennand (November 2009). Regional reconstruction of subglacial hydrology and glaciodynamic behaviour along the southern margin of the Cordilleran Ice Sheet in British Columbia, Canada and northern Washington State, USA. Quaternary Science Reviews. 28 (23–24): 2420—2444. Bibcode:2009QSRv...28.2420L. doi:10.1016/j.quascirev.2009.04.019. 
  28. Smith, Larry N. (15 March 2004). Late Pleistocene stratigraphy and implications for deglaciation and subglacial processes of the Flathead Lobe of the Cordilleran Ice Sheet, Flathead Valley, Montana, USA. Sedimentary Geology. 165 (3–4): 295—332. Bibcode:2004SedG..165..295S. doi:10.1016/j.sedgeo.2003.11.013. 
  29. Beaney, Claire L. (2001). Tunnel channels in southeast Alberta, Canada: : evidence for catastrophic channelized drainage. Quaternary International. Copyright © 2002 Elsevier Science Ltd and INQUA. All rights reserved. 90 (1): 2375—2391. Bibcode:2002QuInt..90...67B. doi:10.1016/S1040-6182(01)00093-3. 
  30. National Geophysical Data Center, 1999. Bathymetry of Lake Superior. National Geophysical Data Center, NOAA. [access date: 2015-03-23].
    (the general reference to NGDC because this lake was never published, compilation of Great Lakes Bathymetry at NGDC has been suspended).
  31. National Geophysical Data Center, 1999. Global Land One-kilometer Base Elevation (GLOBE) v.1. Hastings, D. and P.K. Dunbar. National Geophysical Data Center, NOAA. doi:10.7289/V52R3PMS [access date: 2015-03-16].
  32. Wright Jr., H. E. (1973). Black, Robert Foster; Goldthwait, Richard Parker; Willman, Harold (ред.). Tunnel Valleys, Glacial Surges, and Subglacial Hydrology of the Superior Lobe, Minnesota. Geological Society of America Memoirs. Boulder, Colorado: Geological Society of America Inc. 136: 251—276. doi:10.1130/MEM136-p251. ISBN 0813711363. Процитовано 1 квітня 2015. 
  33. Regis, Robert S., Jennings-Patterson, Carrie, Wattrus, Nigel, and Rausch, Deborah, Relationship of deep troughs in the eastern Lake Superior basin and large-scale glaciofluvial landforms in the central upper peninsula of Michigan [Архівовано 2016-03-04 у Wayback Machine.]. The Geological Society of America. North-Central Section — 37th Annual Meeting (March 24–25, 2003) Kansas City, Missouri. Paper No. 19-10.
  34. Fisher, Timothy G.; Harry M. Jol; Amber M. Boudreau (November 2005). Saginaw Lobe tunnel channels (Laurentide Ice Sheet) and their significance in south-central Michigan, USA. Quaternary Science Reviews. 24 (22): 2375—2391. Bibcode:2005QSRv...24.2375F. doi:10.1016/j.quascirev.2004.11.019. 
  35. Russell, H. A. J.; R. W. C. Arnott; D. R. Sharpe (1 August 2003). Evidence for rapid sedimentation in a tunnel channel, Oak Ridges Moraine, southern Ontario, Canada. Sedimentary Geology. 160 (1–3): 33—55. Bibcode:2003SedG..160...33R. doi:10.1016/S0037-0738(02)00335-4. 
  36. Piper, David J.W.; John Shaw and Kenneth I. Skene (23 March 2007). Stratigraphic and sedimentological evidence for late Wisconsinian sub-glacial outburst floods to Laurentian Fan. Palaeogeography, Palaeoclimatology, Palaeoecology. © 2006 Published by Elsevier B.V. 246 (1): 101—119. doi:10.1016/j.palaeo.2006.10.029. 
  37. Depetris, P.J.; A.I. Pasquini (15 December 2000). The hydrological signal of the Perito Moreno Glacier damming of Lake Argentino (southern Andean Patagonia): the connection to climate anomalies. Global and Planetary Change. Copyright © 2000 Elsevier Science B.V. All rights reserved. 26 (4): 367—374. Bibcode:2000GPC....26..367D. doi:10.1016/S0921-8181(00)00049-7. 

Read other articles:

У этого термина существуют и другие значения, см. Клиновидные кости (стопа). Клиновидная кость Каталоги MeSHMeSHGray?FMATA98  Медиафайлы на Викискладе Клинови́дная кость (основна́я кость) (лат. os sphenoidale) — непарная кость, образующая центральный отдел основания черепа. Состо...

 

Untuk kegunaan lain, lihat Kacang babi. Untuk Kacang-kacangan yang berasal dari genus Vicia, lihat Kara oncet. Kara benguk Perbungaan kara benguk Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosidae Ordo: Fabales Famili: Fabaceae Subfamili: Faboideae Tribus: Phaseoleae Genus: Mucuna Spesies: M. pruriens Nama binomial Mucuna pruriens(L.) DC. Sinonim Referensi:[1][2] Mucuna utilis Wall. ex Wight (1840) M. prurie...

 

Salib pektoral emas dari Italia atau daerah subalpine, akhir abad ke-6 – abad ke-7 Salib pektoral Paus Paulus VI Salib pektoral atau pectorale (dari Latin pectoralis, dari dada) adalah salib yang dikenakan di dada, biasanya digantung di leher dengan tali atau rantai. Pada masa kuno dan abad pertengahan, salib pektoral dikenakan oleh pastor dan awam, namun pada akhir Abad Pertengahan salib pektoral menjadi indikator khusus mengenai kedudukan yang dikenakan oleh para uskup. Di Gereja Katolik ...

Tom DaleyInformasi pribadiNama lengkapThomas Robert Daley[1]Lahir21 Mei 1994 (umur 29)Plymouth, Devon, Britania RayaKediamanLondon, Britania RayaTinggi177 m (580 ft 9 in)[2]Berat74 kg (163 pon)[2]PasanganDustin Lance Black (menikah 2017) OlahragaNegara Britania Raya InggrisLombaMenyelam (10 m, 10 m synchro, 3 m, 3 m sinkro)KlubPlymouth Diving Club London High Performance Centre[3]RekanDaniel Goodf...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

У этого термина существуют и другие значения, см. Округ. В другом языковом разделе есть более полная статья County (United States) (англ.). Вы можете помочь проекту, расширив текущую статью с помощью перевода Карта Соединённых Штатов Америки, показывающая расположение округов Ок�...

Toko roti di Pasar Mahane Yehuda Seorang wanita bekerja dengan oven komersial di sebuah toko roti Sebuah toko roti atau bakeri[1] adalah sebuah tempat yang memproduksi dan menjual makanan yang berbahan dasar tepung dan dipanggang di dalam oven, seperti roti, kukis, kue, pastri, dan pai.[2] Beberapa toko roti ritel juga berperan sekaligus sebagai kafe, dengan menyediakan kopi dan teh sebagai pendamping roti. Sejarah Iklan sebuah toko roti di Jerman, 1442 Etalase di depan toko r...

 

American judge J. Clifford WallaceSenior Judge of the United States Court of Appeals for the Ninth CircuitIncumbentAssumed office April 8, 1996Chief Judge of the United States Court of Appeals for the Ninth CircuitIn officeJanuary 31, 1991 – April 8, 1996Preceded byAlfred GoodwinSucceeded byProcter Ralph Hug Jr.Judge of the United States Court of Appeals for the Ninth CircuitIn officeJune 28, 1972 – April 8, 1996Appointed byRichard NixonPreceded byJames Marshall Cart...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

此條目没有列出任何参考或来源。 (2017年7月5日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 國際相撲總會International Sumo Federation成立時間1983年類型體育組織總部 東京服务地区地球、世界范围[*]主席 田中英壽網站WSF 國際相撲總會(International Sumo Federation,IFS)是一個成立於1983年,專門管轄國際�...

 

1933 British filmPerfect UnderstandingFilm posterDirected byCyril GardnerWritten byMiles MallesonMichael PowellProduced byGloria SwansonStarringGloria SwansonLaurence OlivierJohn HallidayCinematographyCurt CourantEdited byThorold DickinsonMusic byHenry SullivanProductioncompanyGloria Swanson British ProductionsDistributed byUnited ArtistsRelease date 24 February 1933 (1933-02-24) Running time80 minutesCountryUnited KingdomLanguageEnglish Perfect Understanding is a 1933 British...

 

American basketball player (born 1984) For the Australian rugby league player, see Aaron Gray (rugby league). For the American actress, see Erin Gray. Aaron GrayGray (in red jersey) with the Chicago Bulls in February 2009Personal informationBorn (1984-12-07) December 7, 1984 (age 39)Tarzana, California, U. S.Listed height7 ft 0 in (2.13 m)Listed weight270 lb (122 kg)Career informationHigh schoolEmmaus (Emmaus, Pennsylvania)CollegePittsburgh (2003–2007)NBA draft...

Historical place of worship in Huế, Vietnam Thế MiếuNative name Vietnamese: Thế Miếu 世廟Thế Miếu Temple in the Imperial City, HuếTypeConfucian royal ancestral shrineLocationHuế, Thừa Thiên Huế, VietnamBuilt1821OwnerGovernment of VietnamLocation of Thế Miếu in Vietnam Thế Miếu Vietnamese alphabetThế Miếu Thế Tổ MiếuChữ Hán世廟 世祖廟 Altar to Emperor Gia Long Nine dynastic urns dedicated to nine emperors Thế Miếu (chữ Hán: 世廟), als...

 

1569 battle This article is about Battle of Orthez (1569). For information about the Battle of Orthez (1814), see Battle of Orthez. Battle of Orthez 1569Part of the French Wars of ReligionDateAugust 11–15, 1569LocationFrance43°29′N 0°46′W / 43.49°N 0.77°W / 43.49; -0.77Result Huguenot victoryBelligerents Huguenots Kingdom of FranceCommanders and leaders Gabriel de Montgomery TerrideStrength c. 2,500 vteFrench Wars of Religion First; 1562–1563Conflict in the...

 

Dutch rower Herman RouwéPersonal informationBorn (1943-01-20) 20 January 1943 (age 81)Grou, the NetherlandsHeight1.79 m (5 ft 10 in)Weight80 kg (180 lb)SportSportRowingClubTriton, Utrecht Medal record Olympic Games 1964 Tokyo Coxed pair Herman Jan Rouwé (born 20 January 1943) is a retired Dutch rower who competed at the 1964 and 1968 Summer Olympics. In 1964, he won a bronze medal in the coxed pairs event, together with Erik Hartsuiker and Jan-Just Bos. Four ye...

Cet article est une ébauche concernant un coureur cycliste australien. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Pour les articles homonymes, voir Rice. Matthew RiceInformationsNaissance 2 mai 2000 (24 ans)CanberraNationalité australienneÉquipe actuelle St George Continental Cycling TeamÉquipe non-UCI 2022Lotto-Soudal DevelopmentÉquipes UCI 2019Pro Racing Sunshine Coast2020-2021ARA Pro Racing Su...

 

European non-profit association CESAERFormation10 May 1990; 34 years ago (10 May 1990)TypeEducationalHeadquartersCastle of Arenberg, Leuven, BelgiumRegion served EuropePresidentOrla FeelyWebsitecesaer.org CESAER is a non-profit association of universities of science and technology in Europe. CESAER was founded on 10 May 1990, seated in the Castle of Arenberg in Leuven, Belgium. The association has 58 universities of science and technology in 28 countries. The name CESAER was form...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يوليو 2020) فحص الخلفية (فحص المعلومات الاساسية) هي عملية يستخدمها الشخص أو الشركة كي ي�...

إيرباص إيه 330الشعارمصر للطيران إيرباص إيه 330-200معلومات عامةالنوع طائرة نفاثةبلد الأصل عدة دول (التجميع النهائي في فرنسا)المهام طيران تجاري سعر الوحدة إيرباص إيه 330-200 200.8 مليون دولار أمريكيإيرباص إيه 330-300 222.5 مليون دولار أمريكيإيرباص إيه 330 أف 203.6 مليون دولار أمريكي (2011) [2]...

 

In this Japanese name, the surname is Shimizudani. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shimizudani Kinko – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message) Shimizudani Kinko1st Chairman of the Hokkaidō Development CommissionIn officeJuly 8,...