Одноатомная форма водорода — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы. Самый лёгкий из элементов периодической таблицы.
При стандартной температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ (химическая формула — H2), который в смеси с воздухом или кислородомгорюч и крайне пожаро- и взрывоопасен[3]. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.
В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород[6][7].
В 1745 году Михаил Ломоносов изучил реакции растворения металлов кислотами и выдвинул предположение, что выделяющийся в этом процессе «горючий пар» (фактически — водород) является гипотетической субстанцией флогистон[8][9][10].
В 1766 году Генри Кавендиш, независимо от Ломоносова, пришёл к заключению, что «горючий воздух», образующийся при реакции металлов с кислотами, представляет собой флогистон, и в 1781 году обнаружил, что при сгорании этого газа образуется вода[11][12].
Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен[10].
Происхождение названия
Лавуазье дал водороду название hydrogène (от др.-греч.ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал[13]:
Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.
Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году, что являлось переводом латинского hydrogene[10].
Распространённость
Во Вселенной
В настоящее время водород является самым распространённым элементом во Вселенной. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %)[14]. Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.
В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.
На планете Земля
Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %[15].
В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха[16][17]).
На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м³ газа[19]. Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода, полученного из природного газа, оценивается в 1,5—3 доллара за 1 кг.
Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:
В результате данного процесса получается «grey hydrogen», который невозможно применять в топливных элементах, так как примесь CO отравляет катализаторы. Дальше, при его очистке до 10—100 ppm CO, получают «blue hydrogen», но и он отравляет платиновый катализатор.
«Green hydrogen» (особо чистый водород) получают электрохимическим способом. Электролизомводного раствора гидроксидов активных металлов (преимущественно гидроксида калия)[20] (англ.) при повышенных температуре и давлении на Ni-электродах. Это достаточно энергозатратный метод, который составляет лишь 4 % от общего производства водорода.
Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[20] (англ.) или без мембраны[21].
Взаимодействие разбавленных кислот с металлами, стоящими в электрохимическом ряду напряжений до водорода. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:
Электролиз водных растворов кислот, щелочей или некоторых солей на катоде происходит выделение водорода, например:
Получение дейтероводорода
Дейтероводород получают из тяжёлой воды, которую в настоящее время производят электролитическим обогащением обычной воды. 0,0156 % водорода находится в виде дейтерия.
Перенапряжение выделения H2 несколько меньше по сравнению с D2 (хотя зависит от природы материала катода и состава раствора), тяжёлая вода накапливается в электролизёре. Применяется каскад электролизёров.
Другие способы получения дейтероводорода: термодиффузия газообразного водорода, диффузия смеси D2/H2 через палладиевый фильтр.
Очистка
В промышленности реализованы несколько способов очистки водорода из водородосодержащего сырья (так называемый водородсодержащий газ)[22]. Водородсодержащий газ (ВСГ) — это газ с высоким содержанием водорода (10 % и выше). Переход на сжигание водородсодержащих газов — один из способов снижения выбросов углекислого газа в атмосферу.
Низкотемпературная конденсация: ВСГ охлаждают до температур конденсации метана и этана, после чего водород отделяют ректификацией. Процесс ведут при температуре −158 °C и давлении 4 МПа. Чистота очищенного водорода составляет 93—94 % при его концентрации в исходном ВСГ до 40 %.
Адсорбционное выделение на цеолитах: настоящий метод на сегодняшний день наиболее распространён в мире. Метод достаточно гибок и может использоваться как для выделения водорода из ВСГ, так и для доочистки уже очищенного водорода. В первом случае процесс ведут при давлениях 3,0—3,5 МПа. Степень извлечения водорода составляет 80—85 % с чистотой 99 %. Во втором случае часто используют процесс «PSA» фирмы «Union Carbide». Он впервые был реализован в промышленности в 1978 году. На настоящий момент функционирует более 250 установок от 0,6 до 3,0 млн м³ Н2/сут. Образуется водород высокой чистоты — 99,99 %.
Абсорбционное выделение жидкими растворителями: Этот метод применяется редко, хотя водород получается высокой чистоты — 99,9 %.
Концентрирование водорода на мембранах: На лучших образцах метод позволяет получать водород чистотой 95—96 %, однако производительность таких установок невысока.
Селективное поглощение водорода металлами: Метод основан на способности сплавов лантана с никелем, железа с титаном, циркония с никелем и других поглощать до 30 объёмов водорода.
Стоимость
Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2—7 USD/кг[23]. В небольших количествах перевозится в стальных баллонах зелёного или тёмно-зелёного цвета.
Физические свойства
Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх[24]. Шары, наполненные водородом, также стремятся вверх. Водород использовался для воздухоплавания, но из-за взрывоопасности от водорода отказались в пользу гелия. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа, за счёт чего быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.
Молекула водорода двухатомна — Н2. При нормальных условиях это газ без цвета, запаха и вкуса. Плотность 0,08987г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9⋅106Дж/кг, малорастворим в воде — 18,8мл/л при н.у. Растворимость водорода в воде возрастает с увеличением давления и снижается с увеличением температуры.
Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.
Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708г/см³) и текучая (вязкость при −253 °C 13,8сП). Критические параметры водорода: температура −240,2 °C, давление 12,8 атм, критическая плотность 0,0312 г/см³ и критический объём 66,95—68,9 см³/моль (0,033 м³/кг). Указанными значениями критических параметров объясняются трудности при ожижении водорода.
В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2➤.
В 1935 году Уингер и Хантингтон высказали предположение о том, что при давлении свыше 250 тысяч атм водород может перейти в металлическое состояние. Получение этого вещества в устойчивом состоянии открывало очень заманчивые перспективы его применения — ведь это был бы сверхлёгкий металл, компонент лёгкого и энергоёмкого ракетного топлива. В 2014 году было установлено, что при давлении порядка 1,5—2,0 миллионов атмосфер водород начинает поглощать инфракрасное излучение, а это означает, что электронные оболочки молекул водорода поляризуются. Возможно, при ещё более высоких давлениях водород превращается в металл[25]. В 2017 году появилось сообщение о возможном экспериментальном наблюдении перехода водорода в металлическое состояние под высоким давлением[26][27].
Спиновые изомеры
Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород.
Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (англ. о-H2) (т. пл.−259,10 °C,т. кип.−252,56 °C)спины ядер параллельны, а у параводорода п-H2 (англ. p-H2) (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположны друг другу (антипараллельны). Равновесная смесь o-H2 и п-H2 при заданной температуре называется равновесным водородом р-H2 (англ. е-H2), а смесь 75 % орто-водорода и 25 % пара-водорода называется нормальным водородом н-H2 (англ. n-H2).
о-п- кДж
Разделить спиновые изомеры водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1. Десорбированный с угля параводород при нагревании превращается в ортоводород с образованием равновесной смеси. При комнатной температуре равновесна смесь ортоводорода и параводорода в отношении около 75:25[28]. Без катализатора взаимное превращение происходит относительно медленно, что даёт возможность изучить свойства обеих модификаций. В условиях разреженной межзвёздной среды характерное время перехода в равновесную смесь очень велико, вплоть до космологических.
Наиболее известны три изотопа водорода: протий1H (атомное ядро — протон), дейтерий2Н (ядро состоит из одного протона и одного нейтрона) и тритий3Н (ядро состоит из одного протона и двух нейтронов). Эти изотопы имеют собственные химические символы: протий — H, дейтерий — D, тритий — T.
Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно[29]. Оно может незначительно меняться в зависимости от источника и способа получения водорода. Тритий нестабилен, претерпевает бета-распад с периодом12,32 года, превращаясь в стабильный гелий-3[29]. Тритий встречается в природе в следовых количествах, образуясь главным образом при взаимодействии космических лучей со стабильными ядрами, при захвате дейтерием тепловых нейтронов и при взаимодействии природного изотопа лития-6 с нейтронами, порождёнными космическими лучами.
Искусственно получены также тяжёлые радиоактивные изотопы водорода с массовыми числами 4—7 и периодами полураспада 10−21—10−23 с[29].
Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.
Из всех изотопов химических элементов физические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов[30].
Температура плавления, K
Температура кипения, K
Тройная точка
Критическая точка
Плотность, кг/м³
T, K
P, кПа
T, K
P, МПа
жидкий
газ
H2
13,96
20,39
13,96
7,3
32,98
1,31
70,811
1,316
HD
16,65
22,13
16,6
12,8
35,91
1,48
114,0
1,802
HT
22,92
17,63
17,7
37,13
1,57
158,62
2,31
D2
18,65
23,67
18,73
17,1
38,35
1,67
162,50
2,23
DT
24.38
19,71
19,4
39,42
1,77
211,54
2,694
T2
20,63
25,04
20,62
21,6
40,44
1,85
260,17
3,136
Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) — орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.
Свойства изотопов
Свойства изотопов водорода представлены в таблице[29][31].
Изотоп
Z
N
Масса, а. е. м.
Период полураспада
Спин
Содержание в природе, %
Тип и энергия распада
1H
1
0
1,007 825 032 07(10)
стабилен
1⁄2+
99,9885(70)
2H
1
1
2,014 101 777 8(4)
стабилен
1+
0,0115(70)
3H
1
2
3,016 049 277 7(25)
12,32(2) года
1⁄2+
β−
18,591(1) кэВ
4H
1
3
4,027 81(11)
1,39(10)⋅10−22 с
2−
-n
23,48(10) МэВ
5H
1
4
5,035 31(11)
более 9,1⋅10−22 с
(1⁄2+)
-nn
21,51(11) МэВ
6H
1
5
6,044 94(28)
2,90(70)⋅10−22 с
2−
−3n
24,27(26) МэВ
7H
1
6
7,052 75(108)
2,3(6)⋅10−23 с
1⁄2+
-nn
23,03(101) МэВ
В круглых скобках приведено среднеквадратическое отклонение значения в единицах последнего разряда соответствующего числа.
Свойства ядра1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.
Химические свойства
Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:
Поэтому окислительная способность водорода проявляется в реакциях с активными металлами, как правило, при повышенных температуре и давлении. При обычных температурах водород реагирует только с очень активными металлами, например, с кальцием, образуя гидрид кальция:
Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр., Катализатор Уилкинсона), так и гетерогенным (напр., никель Ренея, палладий на угле).
Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.
Геохимия водорода
Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах. Известно содержание водорода в составе вулканических газов, истечение некоторых количеств водорода вдоль разломов в зонах рифтогенеза, выделение этого газа в некоторых угольных месторождениях[32][33].
В атмосфере молекулярный водород непрерывно образуется в результате разложения формальдегида, образующегося в цепочке окисления метана или другой органики, солнечным излучением (31—67 гигатонн/год), неполного сгорания различных топлив и биомасс (по 5—25 гигатонн/год), в процессе фиксации азота микроорганизмами из воздуха (3—22 гигатонн/год)[34][35][36].
Имея малую массу, молекулы водорода в составе воздуха обладают высокой тепловой скоростью (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут навсегда улететь в космическое пространство (см. Диссипация атмосфер планет). Объёмы потерь оцениваются в 3 кг в секунду[37][38].
Меры предосторожности
Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Пределы взрываемости: с воздухом — 4-75 об. %, с кислородом — 4,1-96 об. %[39]. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.
Применение
Водород сегодня применяется во многих областях.
Структура мирового потребления водорода представлена в следующей таблице
Структура мирового потребления водорода по данным Linde (2007) (англ.)[40]
Применение
Доля
Производство аммиака
54 %
Нефтепереработка (гидрогенизация ненасыщенных углеводородов и гидросульфирование) и синтез метанола
35 %
Производство полупроводников
6 %
Металлургия и стекольная промышленность
3 %
Пищевая промышленность
2 %
Химическая промышленность
Химическая промышленность — это крупнейший потребитель водорода. Более 50 % мирового выпуска водорода идёт на производство аммиака. Ещё около 8 % используется для производства метанола[41]. Из аммиака производят пластмассы, удобрения, взрывчатые вещества и прочее. Метанол является основой для производства некоторых пластмасс.
Топливно-энергетический комплекс
В нефтепереработке около 37 % мирового выпуска водорода используется в процессах гидрокрекинга и гидроочистки, способствуя увеличению глубины переработки сырой нефти и повышению качества конечных продуктов[41].
Водород используют и в качестве ракетного топлива. Ввиду крайне узкого диапазона температур (менее 7 кельвинов), при котором водород остаётся жидкостью, на практике чаще используется смесь жидкой и твёрдой фаз.
В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.
Транспорт
Водород используется в качестве топлива для серийно выпускаемых автомобилей на Водородных топливных элементах: Toyota Mirai, Hyundai Nexo. Американская компания[42] представила линейку коммерческих автомобилей на водороде, а также пикап Nikola Badger с запасом хода 960 км[43].
Компания Alstom в 2018 году запустила в Германии первый коммерческий поезд на топливных элементах Coradia iLint, способный проходить 1000 км на одном резервуаре с водородом. Поезда совершают 100-километровые рейсы со скоростью до 140 километров в час[44].
При производстве саломаса (твёрдый жир, производимый из растительных масел) используется около 2 % мирового выпуска водорода. Саломас является основой для производства маргарина, косметических средств, мыла. Водород зарегистрирован в качестве пищевой добавки под номером E949.
Лабораторное
Водород используется в химическихлабораториях в качестве газа-носителя в газовой хроматографии. Такие лаборатории есть на многих предприятиях в пищевой, парфюмерной, металлургической и химической промышленности. Несмотря на горючесть водорода, его использование в такой роли считается достаточно безопасным, поскольку водород используется в незначительных количествах. Эффективность водорода как газа-носителя при этом лучше, чем у гелия, при существенно более низкой стоимости[46].
Метеорология
Водород используется в метеорологии для заполнения оболочек метеозондов. Водород в этом качестве имеет преимущество перед гелием, так как он дешевле. Ещё более существенно, что водород вырабатывается прямо на метеостанции с помощью простого химического генератора или с помощью электролиза воды. Гелий же должен доставляться на метеостанцию в баллонах, что может быть затруднительно для удалённых мест[47].
В настоящее время водород в авиации не используется. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.
↑Севергин В. М. Пробирное искусство, или руководство к химическому испытанию металлических руд и других ископаемых тел. СПб.: Издание Имп. АН, 1801. C. 2.
↑Н. Гринвуд, А. Эрншо. Химия элементов: в 2 томах. — БИНОМ. Лаборатория знаний, 2008. — Т. 1. — С. 11. — 607 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-373-9.
↑Kevin J. Zahnle and David C. Catling.Our Planet's Leaky Atmosphere (неопр.). Scientific American (11 мая 2009). Дата обращения: 28 января 2014. Архивировано 2 января 2014 года.
↑Гресов А. И., Обжиров А. И., Яцук А. В. К вопросу водородоносности угольных бассейнов Дальнего востока/ Вестник КРАУНЦ. Науки о Земле. 2010, № 1, Выпуск 15. С. 19—32.
↑http://www.atmos-chem-phys.net/11/3375/2011/acp-11-3375-2011.pdfАрхивная копия от 21 мая 2013 на Wayback Machine A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion] doi:10.5194/acp-11-3375-2011, 2011 «The main sources of H2 are photochemical production by the transformation of formaldehyde (HCHO) in the atmosphere and incomplete combustion processes. Photolysis of HCHO, a product in the oxidation chain of methane and other volatile organic compounds (VOCs) accounts for 31 to 77 Tg yr−1 and represents half of the total H2 source. Fossil fuel and biomass burning emissions, two incomplete combustion sources, account for similar shares of the global H2 budget (5−25 Tg yr−1). H2 emissions (3−22 Tg yr−1) originating from nitrogen fixation in the continental and marine biosphere complete the sources. H2 oxidation by free hydroxyl radicals (OH) and enzymatic H2 destruction in soils must balance these sources because tropospheric H2 does not show a significant long term trend (Grant et al., 2010)»
↑Olu Ajayi-Oyakhire.Hydrogen – Untapped Energy? (неопр.)Institution of Gas Engineers and Managers. Institution of Gas Engineers and Managers (2012). Дата обращения: 24 марта 2018. Архивировано из оригинала 17 апреля 2018 года.
↑ 12Р. В. Радченко, А. С. Мокрушин, В. В. Тюльпа. Водород в энергетике. — Екатеринбург: Издательство Уральского университета, 2014. — С. 24. — 229 с. — ISBN 978-5-7996-1316-7.
Дигонский С. В., Тен В. В. Неизвестный водород. — СПб: Наука, 2006. ISBN 5-02-025114-3.
Кузьменко Н. Е., Ерёмин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы: Учебное пособие для вузов. — М.: Издательство «Экзамен», 2005.
Ferreira-Aparicio, P.; Benito, M. J.; Sanz, J. L. New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers (англ.) // Catalysis Reviews : journal. — 2005. — Vol. 47, no. 4. — P. 491—588. — doi:10.1080/01614940500364958.