Цель органического синтеза — получение веществ с ценными физическими, химическими и биологическими свойствами или проверка предсказаний теории. Современный органический синтез многогранен и позволяет получать практически любые органические молекулы.
В качестве самостоятельной дисциплины начал оформляться после знаменитого синтеза карбамида (мочевины) из типичного неорганического вещества (цианата аммония), осуществленного немецким химиком Фридрихом Вёлером (Wöhler, Friedrich, 1800—1882) в 1828 г..[1] Этот синтез положил конец спору с учеными-виталистами, полагавшими, что органические вещества могут продуцироваться только за счет жизненной силы биологических организмов.
Дальнейшее развитие органического синтеза происходит параллельно с развитием науки органическая химия. Успехи теорий строения атомов и молекул, химической связи, квантовая химия, кинетика и др. способствовали развитию методов синтеза.
С другой стороны, ряд сложных синтезов как известных в природе веществ (уксусная кислота, индиго, аспирин и др.), так и не имеющих своих аналогов (полиэдраны, многие элементоорганические соединения, синтетические антибиотики и др.), оказал влияние на смежные разделы науки (химия биологически активных веществ, фармакология, физика и химия твердого тела и др.), показав самостоятельность и высокую ценность этого направления органической химии.
Выход органического синтеза за рамки лабораторий произошёл после развития химической технологии и признания промышленной значимости продуктов: карбоновых кислот, полимеров, растворителей, красителей и др. — веществ, объём производства которых характеризуется числами со многими нулями.
Необходимость ориентироваться в огромном числе синтетических методик привела к созданию развитых информационных систем для их поиска и описания, предложения реактивов и синтетической аппаратуры
Методика органического синтеза
Реализация органического синтеза включает следующие научные, организационные и технологические этапы: задание структуры целевой молекулы, рассмотрение возможных схем синтеза, подбор продуктов, аппаратуры, проведение химических реакций, выделение промежуточных и целевых продуктов, их анализ и очистку, модифицирование, принятие мер безопасности, экологический контроль, экономический анализ и др..
Окончательный выбор метода синтеза происходит после всестороннего комплексного анализа этих этапов и их оптимизации.
Реакции органического синтеза
Ниже приводится далеко не исчерпывающий список реакций органического синтеза, классифицированных по признаку изменения химического класса синтезируемой молекулы:
Этерификация — взаимодействие органической кислоты со спиртом с получением сложных эфиров.
Окисление — в узком смысле — внедрение кислорода в молекулу, в широком — любое изменение в молекуле, приводящее к увеличению степени окисления углерода, например, дегидрирование, повышение кратности связи углерод-углерод.
Зачастую органические реакции являются сочетанием двух и более названных более простых реакций, например: «оксигалогенирование», «гидрогалогенирование» и др. Уникальным реакциям могут быть присвоены имена химиков, их обнаруживших — синтез Гриньяра, реакция Белоусова и др.
В качестве основы для классификации могут быть положены и другие критерии — механизм реакций (замещение, обмен), технологический прием (крекинг) и др.
Специализированные НИИ
Исследованием органического синтеза занимаются многочисленные институты, в том числе Институт органического синтеза УрО РАН (ИОС, Екатеринбург), созданный Постановлением Российской Академии Наук в 1993 году.