Впервые об этой кривой упоминает флорентийский монах Гвидо Гранди в двух письмах Лейбницу в декабре 1713 года[1][2] и называет её «розовидной»[3] («rhodonea»[1], от др.-греч.ῥόδον — «роза»). Через десять лет он опубликовал статью о ней в «Философских трудах Королевского общества», где рассмотрел разновидности этой кривой с различным количеством лепестков и также называл их «розовидными»[4]. Ещё через пять лет Гвидо Гранди развил теорию розовидных кривых в отдельном труде, где наряду с этим рассмотрел похожие на них пространственные кривые, лежащие на сфере, которые он назвал «клелиями» в честь княгини Клелии Борромео[5][3][2].
Здесь и — постоянные, определяющие размер (a) и количество лепестков (k) данной розы. Вся кривая располагается внутри окружности радиуса и в случае состоит из одинаковых по форме и размеру лепестков. Количество лепестков в данном случае определяется величиной .
Для целого число лепестков равно , если нечётное и , — если чётное. Для дробного вида , где и взаимно простые, количество лепестков розы равно , если оба числа нечётные и , если хотя бы одно — чётно. При иррациональном лепестков бесконечно много.
Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. — 3-е изд., испр. — М.: ЛКИ, 2008. — 248 с. — ISBN 978-5-382-00839-4.