As proteínas (do grego πρωτεϊνη, primeiro) son unhas macromoléculas formadas por α-aminoácidos. Poden estar formadas por unha ou varias cadeas de aminoácidos. As proteínas son moléculas orgánicas esenciais na estrutura e función dos seres vivos (por exemplo, forman parte integral dos tecidos biolóxicos e moitas delas funcionan como encimas). Levan a cabo unha ampla gama de funcións nos organismos, como a catálisemetabólica, replicación do ADN, resposta aos estímulos, transporte de moléculas etc. A súa función nutritiva fundamental é plástica, formadora de estruturas orgánicas. Tamén poden servir en determinados casos como fonte de enerxía, pero nunha alimentación equilibrada esta función é asumida polos carbohidratos e os lípidos.
Unha cadea longa de aminoácidos denomínase polipéptido. O termo proteína dáse xeralmente cando o polipéptido ou un conxunto de varios ten unha función e conformación determinada. Porén, os termos péptido, polipéptido e proteína úsanse con frecuencia dun modo pouco específico, xa que ás veces non hai un límite claro entre eles. Nas proteínas normalmente hai 20 aminoácidos (ver aminoácido proteinoxénico), pero poden incorporar algúns máis en casos especiais. Os aminoácidos teñen grupos amino e carboxilo por medio dos que se enlazan por enlace peptídico formando a cadea polipeptídica. As proteínas difiren unhas das outras principalmente na súa secuencia de aminoácidos, que está determinada pola secuencia de nucleótidos dos seus xenes, e que xeralmente dá lugar a un pregamento tridimensional específico da proteína, que lle dá unha estrutura necesaria para a súa actividade. Cada posible combinación de tres nucleótidos (tripletes) que se suceden na secuencia dun xene codifica un determinado aminoácido, segundo as correspondencias do código xenético. En xeral, o código xenético só codifica os 20 aminoácidos proteinoxénicos normais, pero en certos organismos dito código pode codificar por un mecanismo especial a selenocisteína e, en certas arqueas a pirrolisina. Despois de rematada a síntese de proteínas ou mesmo durante a mesma, poden modificarse encimaticamente residuos de aminoácidos da proteína por modificación postraducional, o que altera as súas propiedades físicas e químicas, o pregamento, estabilidade, actividade e, finalmente, a función das proteínas. Ás veces as proteínas levan unidos grupos químicos que non son peptídicos, que se denominan grupos prostéticos ou cofactores. Distintas proteínas poden tamén funcionar en conxunto para realizaren unha determinada función, e a miúdo poden estar asociadas formando complexos proteicos estables.
As proteínas poden purificarse a partir doutros compoñentes celulares utilizando varias técnicas como a ultracentrifugación, precipitación, electroforese e cromatografía; a aparición das técnicas de enxeñaría xenética fixo posible aplicar diversos métodos que facilitan a purificación. Entre os métodos que se utilizan comunmente para estudar a estrutura e función das proteínas están a inmunohistoquímica, mutaxénese dirixida, resonancia magnética nuclear e espectrometría de masas.
O enlace peptídico que enlaza os aminoácidos da proteína establécese entre o grupo amino dun aminoácido e o grupo carboxilo do seguinte aminoácido. Nos extremos os grupos amino e carboxilo quedan libres, polo que se di que a proteína ten un extremo amino terminal ou N-terminal (por onde por convención se considera que empeza a proteína) e un extremo carboxilo terminal ou C-terminal (por onde acaba).
O enlace peptídico ten dúas formas de resonancia (o dobre enlace pode estar no C=O ou no C=N), que lle dan certo carácter de dobre enlace e inhiben a rotación arredor do seu eixe, de modo que os carbonos alfa son coplanares. Os outros dous ángulos diedros no enlace peptídico determinan a forma local que adopta o esqueleto da proteína.[1]
As proteínas son compostos orgánicos de estrutura complexa e masa molecular elevada (entre 15.000 e 20.000.000 Da) e son sintetizadas polos organismos vivos nos ribosomas por medio da combinación dun número maior ou menor de moléculas de aminoácidos, que se ligan por enlace peptídico. Son, pois polímeros formados pola unión de aminoácidos, que son os seus monómeros. Poden ter centos de aminoácidos.
A secuencia de aminoácidos da proteína está determinada pola secuencia de nucleótidos do xene que a codifica. O xene do ADN é transcrito a un ARNm, que madura (en eucariotas) e se dirixe aos ribosomas, únese a eles e é traducido. A secuencia de nucleótidos do ARNm, tomados de 3 en 3, formando codóns, é lida no ribosoma segundo as correspondencias do código xenético. Neste código cada codón determina un aminoácido.[2]. Os aminoácidos chegan ao ribosoma traídos por ARNts, que están entrando e saíndo do ribosoma continuamente. Os ARNts teñen unha secuencia anticodón, complementaria dalgún dos codóns. Hai ARNt específicos para cada aminoácido, e uns encimas chamados aminoacil ARNt sintetases, enlazan cada aminoácido co ARNt correcto. No ribosoma os aminoácidos únense por enlace peptídico formando unha cadea de aminoácidos cada vez máis longa, que permanece unida ao último ARNt que entra. O polipéptido en crecemento denomínase a miúdo cadea nacente. As proteínas biosintetízanse sempre empezando no extremo N-terminal e acabando no C-terminal.[2] O ARNm vai expoñendo sucesivamente todos os seus codóns no ribosoma. Cando se chega a unha secuencia de finalización do ARNm, a cadea polipeptídica libérase. A proteína prégase e pode despois sufrir modificacións postraducionais.
A taxa de síntese proteica en procariotas é máis alta que en eucariotas e pode chegar a 20 aminoácidos por segundo.[3] O tamaño dunha proteína sintetizada pode medirse poo número de aminoácidos que contén e pola súa masa molecular total en daltons, Da, (sinónimo de unidade de masa atómica), ou en kDa. Unha proteína de lévedo media ten uns 446 aminoácidos e uns 53 kDa.[4] A proteína máis longa coñecida é a titina, que se encontra no sarcómeromuscular, cunha masa de 3.000 kDa e case 27.000 aminoácidos.[5]
Síntese química
No laboratorio poden sintetizarse pequenas proteínas por un conxunto de métodos chamados síntese de péptidos, que dependen de técnicas de síntese orgánica para producir péptidos con alto rendemento.[6] A síntese química permite a introdución de aminoácidos non naturais nas cadeas polipeptídicas, como a unión de sondas flourescentes ás cadeas laterais de aminoácidos.[7] Estes métodos son útiles en bioquímica e bioloxía celular de investigación, aínda que xeralmente non para aplicacións comerciais. A síntese química é ineficiente para producir polipéptidos de máis duns 300 aminoácidos, e as proteínas sintetizadas poden non adoptar doadamente a súa estrutura terciaria nativa. Os métodos en síntese química avanzan dende o extremo C-terminal ao N-terminal, ao revés ca a síntese biolóxica nos ribosomas[8], se son en fase sólida, mais os feitos en disolución avanzan no mesmo sentido que o biolóxico.
Clasificación
Composición
Canto á estrutura molecular, as proteínas clasifícanse en:
Nucleoproteínas: o grupo é un ácido nucleico. Por exemplo certas proteínas víricas.
Proteínas fibrosas e globulares
Proteínas fibrosas:
Son aquelas que presentan moléculas distendidas e filamentosas, semellantes a longos fíos. coláxeno e fibrina son exemplos de proteínas fibrosas. Son raras.
Proteínas globulares:
Presentan as moléculas enroladas como novelos, e son solúbeis na auga formando micelas. A maioría das proteínas presentan estrutura globular, como, por exemplo, os encimas, anticorpos, hemoglobina, proteínas asociadas á clorofila e proteínas estruturais.
As proteínas presentan catro niveis de estudo ou de estrutura que dependen da configuración espacial da cadea polipeptídica, do tamaño da cadea, e do tipo de aminoácidos que posúe. As estruturas básicas son:
Constituída por unha cadea de aminoácidos na que se estabelecen ligazóns por pontes de hidróxeno entre os aminoácidos distantes da cadea. Estas ligazóns confírenlle a forma en hélice alfa, folla pregada beta. Esta estrutura depende, entre outros factores, do medio onde a proteína se prega.
Estrutura terciaria:
Resulta do enrolamento da hélice ou da folla pregada, e é mantido por pontes de hidróxeno e disulfuro entre aminoácidos da mesma cadea. Esta estrutura confire a actividade biolóxica ás proteínas. Pode ser globular ou filamentosa.
Estrutura cuaternaria:
Resulta da asociación de varias subunidades peptídicas con estrutura terciaria; estas permanecen unidas xeralmente a través de ligazóns covalentes coma pontes disulfuro entre cisteínas.
As proteínas non son moléculas totalmente ríxidas. Ademais de teren os seus niveis estruturais característicos, as proteínas poden cambiar entre varias estruturas relacionadas mentres realizan as súas funcións. No contexto desde rearranxos funcionais, estas estruturas terciarias e cuatrernarias son normalmente denominadas "conformacións", e as transicións entre elas chámanse cambios conformacionais. Tales cambios están a miúdo inducidos pola unión de moléculas substrato ao sitio activo dun encima, ou á rexión física da proteína que participa na catálise química. En proteínas en disolución tamén sofren a variación na estrutura por vibración térmica e a colisión con outras moléculas.[10]
As proteínas poden dividirse informalmente en tres clases principais, que se correlacionan con estruturas terciarias típicas: proteínas globulares, fibrosas e de membrana.[11]
Determinación da estrutura
O descubrimento de cal é a estrutura terciaria dunha proteína ou a cuaternaria dun complexo proteico pode proporcionar importantes indicios sobre como realiza a proteína a súa función. Os métodos experimentais máis comúns para a determinación da estrutura son a cristalografía de raios X e a espectroscopía de resonancia magnética nuclear (NMR), as cales poden fornecer información a resolución atómica. Porén, os experimentos de NMR poden proporcionar información a partir da cal pode estimarse un conxunto de distancias entre pares de átomos, e as posibles conformacións finais dunha proteína determínanse resolvendo a distancia xeométrica problema. A interferometría de polarización dual é un método analítico cuantitativo para medir a conformación da proteína total e os cambios conformacionais debidos a interaccións ou outros estímulos. O dicroísmo circular é outra técnica de laboratorio para determinar a composición en folla beta ou helicoidal interna das proteínas. A microscopia crioelectrónica utilízase para producir información estrutural de baixa resolución sobre complexos proteicos moi grandes, incluídos virus ensamblados;[12] unha variante coñecida como cristalografía electrónica pode tamén producir información de alta resolución nalgúns casos, especialmente para cristais bidimensionais de proteínas de membrana.[13]
As estruturas resoltas almacénanse xeralmente en Protein Data Bank (PDB), unha fonte de acceso libre da que se poden obter datos de miles de proteínas en forma de coordenadas cartesianas para cada átomo da proteína.[14] Coñécense moitas máis secuencias que estruturas de proteínas. Ademais, o conxunto de estruturas xa resoltas é predominantemente o de proteínas que poden ser sometidas facilmente ás condicións requiridas na cristalografía de raios X, que é un dos principais métodos de determinación estrutural. En especial, as proteínas globulares son comparativamente máis doadas de cristalizar en preparacións de cristalografía de raios X. As proteínas de membrana, polo contrario, son difíciles de cristalizar e están subrepresentadas na PDB.[15] As iniciativas baseadas na xenómica estrutural intentaron remediar estas deficiencias resolvendo sistematicamente estruturas representativas dos principais tipos de pregamento. Os métodos de predición de estruturas das proteínas tratan de proporcionar métodos de xerar unha estrutura plausible de proteínas cuxas estruturas non foron aínda determinadas experimentalmente.[16]
Desnaturalización e renaturalización
As proteínas poden desnaturalizar. Isto acontece cando, por acción de substancias químicas ou da calor as proteínas sofren alteración da estrutura terciaria ou a quebra das ligazóns non covalentes da estrutura cuaternaria.
As proteínas perden a súa conformación e, consecuentemente, a súa funcionalidade. A desnaturalización pode ser reversíbel ou irreversíbel.
Dependendo da forma pola cal a proteína foi desnaturalizada, a súa conformación nativa pódese recuperar (renaturalización) retirándose lentamente o axente desnaturalizante, como por exemplo facer unha diálise contra auga para retirar o axente desnaturalizante urea.
Función biolóxica
As proteínas son as principais moléculas da célula, que levan a cabo as instrucións especificadas na información xenética.[4] Coa excepción de certos tipos de ARN, a maioría das demais moléculas biolóxicas son elementos relativamente inertes sobre as cales actúan as proteínas. As proteínas supoñen a metade do peso seco dunha célula de Escherichia coli, mentres que outras macromoléculas como o ADN e ARN supoñen só o 3% e 20%, respectivamente.[17] O conxunto de proteínas expresadas nunha determinada célula ou tipo celular denomínase proteoma.
Igual que outras macromoléculas biolóxicas como os polisacáridos e ácidos nucleicos, as proteínas son partes esenciais do organismo e participan virtualmente en todos os procesos celulares. Moitas proteínas son encimas que catalizan reaccións bioquímicas e son esenciais no metabolismo. As proteínas tamén teñen funcións estruturais e mecánicas, como a actina e miosina do músculo e as proteínas do citoesqueleto, o cal forma un armazón que mantén a forma celular. Outras proteínas son importantes na sinalización celular, respostas inmunes, adhesión celular e o ciclo celular. As proteínas son tamén necesarias nas dietas dos animais, xa que os animais non poden sintetizar todos os aminoácidos que necesitan e deben obter os aminoácidos esenciais da dieta. Por medio do proceso da dixestión, os animais degradan as proteínas a aminoácidos libres que son despois absorbidos no intestino e utilizados no metabolismo.
As proteínas teñen as seguintes funcións:
Estrutural e motil
Son aquelas que participan dos tecidos dándolles rixidez, consistencia e elasticidade. Son proteínas estruturais: coláxeno ( cartilaxes), elastina, fibroína (arañeiras), queratina (cabelo), resilina (moi elástica, nas ás de insectos) e outras.
Algunhas proteínas estruturais interveñen na motilidade celular ou de todo o organismo. Algunhas delas teñen propiedades contráctiles e interveñen nos movementos das células musculares e outras, como é o caso da actinaemiosina. Outras proteínas que interveñen na motilidade intracelular son a cinesina e dineína. A proteína tubulina non é contráctil, pero forma os flaxelos e cilios.
Regulatoria
Algunhas hormonas (substancias que exercen algunha función específica sobre algún órgano ou estrutura dun organismo) son de natureza proteica, como por exemplo a insulina, hormona do crecemento ou hormona paratiroide. Outras interveñen na sinalización celular como receptores de moléculas sinalizadoras eucariotas, ou son represores de xenes bacterianos. Moitos receptores teñen un sitio de unión exposto na superficie da célula e un dominio efector dentro da célula, o cal pode ter unha actividade encimática ou poden sufrir un cambio conformacional detectado por outras proteínas do interior da célula.[18]
Defensa
Os anticorpos son proteínas (inmunoglobulinas) que participan na defensa do organismo contra microorganismos e todo tipo de substancias estrañas. A afinidade de unión dun anticorpo pola súa molécula diana é extraordinariamente alta.[19]
Tamén teñen unha función defensiva impedindo a perda de sangue nas hemorraxias, como o fibrinóxeno ou a trombina. Outras son tóxicas, como a ricina, que é unha forma de defensa das plantas. No plasma de peixes antárticos hai proteínas anticonxelantes que os defenden da conxelación.
Enerxética (nutrición e reserva)
Obtención de enerxía a partir dos aminoácidos que compoñen as proteínas. Esta é unha función de urxencia en organismos superiores, cando a indispoñibilidade de ácidos graxos ou monosacáridos así o dita. Porén, hai algunhas proteínas que están especializadas na nutrición e reserva enerxética, como a caseína do leite, a ovoalbumina do ovo ou a gliadina das sementes de trigo.
Posibilitan as reaccións bioquímicas, permitindo reducir a enerxía libre de Gibbs de activación e acelerando as reaccións. Coñécense máis de 4000 reaccións catalizadas por encimas. Os encimas son xeralmente moi específicos e catalizan só unha ou unhas poucas reaccións químicas. Os encimas levan a cabo a maior parte das reaccións do metabolismo, interveñen na replicación do ADN, reparación do ADN e transcrición xenética. Algúns encimas actúan sobre outras proteínas par engadir ou quitar grupos químicos nun proceso chamado modificación postraducional.[20] O grao de aceleración proporcionado pola catálise encimática é xeralmente enorme, por exemplo, incrementando a velocidade de reacción arredor de 1017 veces con respecto a unha reacción non catalizada no caso da orotato descarboxilase.[21]
As moléculas que se unen e sobre as que actúa o encima denomínanse substratos. O substrato entra nunha rexión do encima denominada centro activo, onde ten lugar a reacción. Aínda que o encima pode estar formado por centos de aminoácidos, só unha pequena fracción dos aminoácidos interaccionan co substrato, e na catálise adoitan estar implicados só tres ou catro aminoácidos.[22]
Transporte
Algunhas proteínas transportan substancias. Por exemplo, os gases respiratorios (osíxeno e dióxido de carbono) son transportados por proteínas como a hemoglobina e hemocianina. A hemoglobina é un exemplo de proteína que se une con alta afinidade a unha pequena molécula ligando cando o ligando está presente en altas concentracións (como ocorre nos pulmóns) e que liberan o ligando cando chegan a tecidos onde hai baixas concentracións deste.[23]
As lipoproteínas transportan lípidos polo sangue. Algunhas proteínas son transportadores de membrana, que levan moléculas dun lado a outro da membrana.
Unión a outras moléculas
A principal característica das proteínas que lles permiten realizar o seu diverso conxunto de funcións é a súa capacidade de unirse a outras moléculas de forma específica e firme. A rexión das moléculas proteicas responsable da unión a outras moléculas denomínase sitio de unión e é xeralmente unha depresión na superficie da molécula ou "peto". Esta capacidade de unión está mediada pola súa estrutura terciaria, a cal define o peto do sitio de unión, e polas propiedades químicas das cadeas laterais dos aminoácidos que o rodean. A unión das proteínas a outras moléculas pode ser extraordinariamente forte e específica; por exemplo, a proteína inhibidora da ribonuclease únese á anxioxenina humana cunha constante de disociación subfemtomolar (<10−15 M) pero non se pode unir a ningún dos seus homólogos de anfibios, as onconases (>1 M). Cambios químicos extremadamente pequenos como a adición dun só grupo metilo a unha molécula á que se debe unir a proteína pode ás veces ser suficiente para case eliminar a unión; por exemplo, a aminoacil ARNt sintetase específica do aminoácido valina distingue esta do aminoácido leucina de cadea lateral moi similar.[24]
As proteínas poden unirse a outras proteínas ou a pequenas moléculas substrato. Cando as proteínas se unen especificamente a outras copias da mesma molécula, poden oligomerizarse para formar fibrilas; este proceso ocorre a miúdo en proteínas estruturais que constan de monómeros globulares que se autoensamblan para formar fibras ríxidas. As interaccións proteína-proteína tamén regulan a actividade encimática, o control do progreso do ciclo celular e permiten a ensamblaxe de grandes complexos proteicos que levan a cabo moitas reaccións moi relacionadas cunha función biolóxica común. As proteínas poden tamén unirse ou mesmo integrarse nas membranas cellares. A capacidade de unirse a outras moléculas para inducir cambios conformacionais nas proteínas permite a formación de redes de sinalización celular de enorme complexidade.[25]
As interaccións entre proteínas son reversibles, e dependen fortemente da dispoñibilidade de diferentes grupos de proteínas ás que se asocian para formar agregados que son capaces de realizar un determinado conxunto de funcións. O estudo da interacción entre proteínas específicas é fundamental para comprender aspectos importantes das funcións celulares, e finalmente as propiedades que distinguen os distintos tipos celulares.[26][27]
Métodos de estudo
As estruturas e actividades das proteínas foron estudadas in vitro e in vivo. Os estudos in vitro de proteínas purificadas en condicións controladas son útiles para descubrir como unha proteína leva a cabo a súa función: por exemplo, os estudos de cinética encimática exploran os mecanismos químicos da actividade catalítica dun encima e a súa afinidade relativa por varios posibles substratos. Os experimentos in vivo estudan as actividades das proteínas dentro das células ou dentro do organismo no seu conxunto, e poden proporcionar información complementaria sobre o lugar onde actúa a proteína e como se regula.
Purificación de proteínas
Para realizar unha análise in vitro dunha proteína, esta debe ser purificada e separada doutros compoñentes celulares. Este proceso xeralmente empeza coa lise da célula, na cal se destrúe a membrana celular e o contido da célula libérase formando unha solución chamada lisado cru. A mestura resultante pode ser purificada utilizando ultracentrifugación, a cal fracciona os diversos compoñentes celulares en fraccións que conteñen proteínas solubles; lípidos de membrana e proteínas; orgánulos celulares e ácidos nucleicos. A precipitación por un método baseado en utilizar altas concentracións salinas pode concentrar as proteínas do lisado. Despois úsanse varios tipos de cromatografía para illar a proteína ou proteínas que interesan baseándose en propiedades como a masa molecular, carga neta e afinidade de unión.[28] O nivel de purificación pode ser monitorizado usando varios tipos de electroforese en xel se se coñecen a masa molecular da proteína desexada e o seu punto isoeléctrico, ou por espectroscopia se a proteína ten características espectroscópicas distinguibles, ou por ensaios de encimas se a proteína ten unha actividade encimática. Ademais, as proteínas poden ser illadas segundo a súa carga por medio do electroenfoque.[29]
Para as proteínas naturais, pode ser necesario seguir unha serie de pasos de purificación para obter proteínas puras dabondo para as aplicacións de laboratorio. Para simplificar este proceso, a míúdo utilízase a enxeñaría xenética para engadir características químicas á proteína que a fagan máis fácil de purificar sen afectar á súa estrutura ou actividade. Por exemplo, únese unha "etiqueta" consistente nunha secuencia de aminoácidos específica, como unha serie de residuos de histidina (unha "etiqueta His"), que se enlaza a un extremo da proteína. Como resultado, cando o lisado se fai pasar por unha columna de cromatografía que conteña níquel, os residuos de histidina líganse ao níquel e quedan unidos á columna (xunto con toda a proteína) mentres que os compoñentes non etiquetados do lisado escoan sen dificultade. Ideáronse varias etiquetas diferentes para axudar aos investigadores a purificar proteínas específicas a partir de mesturas complexas.[30]
Localización celular
O estudo das proteínas in vivo trata moitas veces de coñecer cal é a localización e lugar de síntese da proteína na célula. Aínda que moitas proteínas intracelulares se sintetizan no citoplasma e as proteínas unidas a membrana ou segregadas polo retículo endoplasmático, moitas veces non están tan claros os detalles de como as proteínas se destinan a orgánulos específicos ou estruturas celulares. Unha técnica útil para estimar a localización celular utiliza a enxeñaría xenética para expresar na célula unha proteína de fusión ou quimera formada pola proteína natural de interese unida a un "reporteiro" como a proteína fluorescente verde (GFP).[31] A localización na célula da proteína fusionada pode ser visualizada de forma clara e eficiente por microscopía,[32] como se ve no exemplo da figura.
Outros métodos para dilucidar a localización celular de proteínas require o uso de marcadores de compartimento coñecidos para rexións como o retículo endoplasmático, o aparato de Golgi, lisosomas ou vacúolos, mitocondria, cloroplastos, membrana plasmática etc. Co uso de versións etiquetadas fluorescentemente destes marcadores ou de anticorpos para marcadores coñecidos, fíxose máis sinxelo identificar a localización dunha proteína de interese. Por exemplo, a inmunofluorescencia indirecta permite a colocalizaciónn fluorescente e a demostración da localización. As tinguiduras fluorescentes utilízanse para etiquetar compartimentos celulares para un propósito similar.[33]
Existen outras posibilidades. Por exemplo, a inmunohistoquímica xeralmente utiliza un anticorpo para unha ou máis proteínas de interese que están conxugadas a encimas producindo sinais luminescentes ou cromoxénicos que poden compararse entre mostras, o que permite a localización da información. Outra técnica aplicable é a cofraccionación en gradientes de sacarosa (ou outro material) utilizando centrifugación isopícnica.[34] Aínda que esta técnica non proba a colocalización dun compartimento de densidade coñecida e a proteína de interese, incrementa a probabilidade, e é máis axeitado para estudos a grande escala.
Finalmente, o método estándar de localización celular é a microscopía inmunoelectrónica. Esta técnica tamén usa un anticorpo para a proteína de interese, xunto coas técnicas de microscopía electrónica clásicas. A mostra prepárase para o exame por microscopía electrónica normal, e despois é tratada cun anticorpo para a proteína de interese que é conxugada a un material extremadamente electrodenso, xeralmente ouro. Isto permite a localización tanto dos detalles estruturais coma da proteína procurada.[35]
Con outra aplicación de enxeñaría xenética chamada mutaxénese dirixida a sitio, pódese alterar a secuencia da proteína e, polo tanto, a súa estrutura, localización celular e susceptibilidade á regulación. Esta técnica mesmo permite a incorporación ás proteínas de aminoácidos, utilizando ARNts modificados,[36] e pode permitir o deseño de novas proteínas con novas propiedades.[37]
O complemento proteico completo presente nun determinado momento nunha célula ou tipo celular denomínase proteoma, e o estudo de conxuntos de datos a grande escala define o campo da proteómica, denominado así por analoxía co campo relacionado da xenómica. Técnicas experimentais fundamentais en proteómica son a electroforese en xel bidimensional,[38] que posibilita a separación dun gran número de proteínas, a espectrometría de masas,[39] que permite unha rápida identificación de alto rendemento de proteínas e a secuenciación de péptidos (xeralmente despois dunha dixestión en xel), as micromatrices de proteínas,[40] coas que se poden detectar os niveis relativos de gran número de proteínas presentes na célula, e sistema de dobre híbrido, que permite s exploración sistemática das interaccións proteína-proteína.[41] O conxunto total de todas estas interaccións bioloxicamente posibles denomínase interactoma.[42] Un intento sistemático de determinar as estruturas de proteínas que inclúa todos os posibles pregamentos coñécese como xenómica estrutural.[43]
A predición da estrutura das proteínas é unha área complementaria da xenómica estrutural, que trata de predicir as estruturas proteicas para elaborar modelos axeitados das proteínas cuxas estruturas non foron aínda determinadas experimentalmente.[44] O tipo máis exitoso de predición de estruturas, chamado modelado de homoloxía, baséase na existencia dunha estrutura "patrón" ou "molde" con semellanza de secuencia coa proteína que está a ser modelada; o obxectivo da xenómica estrutural é proporcionar unha representación suficiente das estruturas xa resoltas para modelar a maioría das que quedan.[45] Aínda que elaborar modelos axeitados segue a ser un reto cando só se dispón de estruturas "patrón" pouco relacionadas, suxeriuse que o aliñamento de secuencia é o punto crítico neste proceso, xa que poden producirse modelos bastante axeitados se se coñece un aliñamento de secuencia "perfecto".[46] Moitos métodos de predición de estruturas serviron para informar o campo emerxente da enxeñaría de proteínas, no cal foron xa deseñados os novos pregamentos de proteínas.[47] Un problema computacional máis complexo é a predición de interaccións intermoleculares, como no acoplamento molecular e a predición da interacción proteína–proteína.[48]
As proteínas foron recoñecidas como unha clase distinta de moléculas biolóxicas no século XVIII por Antoine Fourcroy e outros, pola súa capacidade de coagular ou flocular cando se trataban con calor ou ácidos. Notables exemplos de proteínas recoñecidas naquel momento foron a albumina da clara dos ovos, a albumina sérica do sangue, a fibrina e o glute do trigo.
As proteínas foron descritas por primeira vez polo químico holandés Gerardus Johannes Mulder e nomeadas polo químico sueco Jöns Jacob Berzelius en 1838. Mulder levou a cabo a análise elemental de proteínas comúns e encontrou que case todas as proteínas tiñan a mesma fórmula empírica, C400H620N100O120P1S1.[53] Chegou á errada conclusión de que poderían estar compostas por un só tipo de molécula (moi grande). O termo "proteína" proposto por Berzelius deriva do grego πρωτεῖος (proteios), que significa "primario",[54] "á cabeza", ou "situado diante".[55] Mulder seguiu os seus traballos identificando os produtos da degradación das proteínas como o aminoácidoleucina para a cal calculou un peso molecular (case correcto) de 131 Da.[53]
Os primeiros científicos da nutrición como o alemán Carl von Voit crían que as proteínas eran os nutrientes máis importantes para manter a estrutura do corpo, porque críase xeralmente que a "carne fai carne".[56] O papel fundamental das proteínas como encimas nos organismos vivos non foi totalmente apreciado ata 1926, cando James Batcheller Sumner mostrou que o encima urease era, de feito, unha proteína.[57]
A dificultade que ten purificar proteínas en grandes cantidades fixo que fose moi difícil o seu estudo polos primeiros bioquímicos. Por iso, os primeiros estudos centráronse en proteínas que podían ser purificadas en grandes cantidades, como as do sangue, clara de ovo, varias toxinas e encimas dixestivos ou metabólicos obtidos en matadeiros. Na década de 1950, a compañía Armour Hot Dog Co. purificou 1 kg de ribonuclease A pancreática bovina pura e púxoa a disposición dos científicos gratuitamente, o que contribuíu a que a ribonuclease A se convertese nun dos obxectivos principais dos estudos bioquímicos nos anos seguintes.[53]
A primeira proteína que foi secuenciada foi a insulina, por Frederick Sanger, en 1949. Sanger determinou correctamente a secuencia de aminoácidos da insulina, demostrando así concluíntemente que as proteínas consisten en polímeros liñais de aminoácidos en vez de cadeas ramificadas, coloides, ou ciclois.[62] Este descubrimento valeulle o premio Nobel en 1958.
↑Dobson CM (2000). "The nature and significance of protein folding". En Pain RH (ed.). Mechanisms of Protein Folding. Oxford, Oxfordshire: Oxford University Press. pp. 1–28. ISBN0-19-963789-X.
↑ 4,04,1Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipurksy SL, Darnell J (2004). Molecular Cell Biology (5th ed.). New York, New York: WH Freeman and Company.
↑Bruckdorfer T, Marder O, Albericio F (2004). "From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future". Current Pharmaceutical Biotechnology5 (1): 29–43. PMID14965208. doi:10.2174/1389201043489620.
↑Schwarzer D, Cole P (2005). "Protein semisynthesis and expressed protein ligation: chasing a protein's tail". Current Opinions in Chemical Biology9 (6): 561–69. PMID16226484. doi:10.1016/j.cbpa.2005.09.018.
↑En España, na literatura en castelán, adoita utilizarse o termo holoproteína para denominar as proteínas simples. Pero, ao contrario, na literatura inglesa holoprotein significa heteroproteína (de modo análogo ao termo holoencima), e este significado está moi estendido polo mundo. Neste artigo evitouse usar o termo holoproteína debido á súa ambigüidade.
↑Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA (2009). "Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible?". BioEssays: news and reviews in molecular, cellular and developmental biology31 (6): 629–41. PMID19382224. doi:10.1002/bies.200800138.
↑Samarin S, Nusrat A (2009). "Regulation of epithelial apical junctional complex by Rho family GTPases". Frontiers in bioscience: a journal and virtual library14 (14): 1129–42. PMID19273120. doi:10.2741/3298.
↑Hey J, Posch A, Cohen A, Liu N, Harbers A (2008). "Fractionation of complex protein mixtures by liquid-phase isoelectric focusing". Methods in Molecular Biology. Methods in Molecular Biology™ 424: 225–39. ISBN978-1-58829-722-8. PMID18369866. doi:10.1007/978-1-60327-064-9_19.
↑Terpe K (2003). "Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems". Applied Microbiology and Biotechnology60 (5): 523–33. PMID12536251. doi:10.1007/s00253-002-1158-6.
↑Walker JH, Wilson K (2000). Principles and Techniques of Practical Biochemistry. Cambridge, UK: Cambridge University Press. pp. 287–89. ISBN0-521-65873-X.
↑Hohsaka T, Sisido M (2002). "Incorporation of non-natural amino acids into proteins". Current Opinion in Chemical Biology6 (6): 809–15. PMID12470735. doi:10.1016/S1367-5931(02)00376-9.
↑Cedrone F, Ménez A, Quéméneur E (2000). "Tailoring new enzyme functions by rational redesign". Current Opinion in Structural Biology10 (4): 405–10. PMID10981626. doi:10.1016/S0959-440X(00)00106-8.
↑Görg A, Weiss W, Dunn MJ (2004). "Current two-dimensional electrophoresis technology for proteomics". Proteomics4 (12): 3665–85. PMID15543535. doi:10.1002/pmic.200401031.
↑Conrotto P, Souchelnytskyi S (2008). "Proteomic approaches in biological and medical sciences: principles and applications". Experimental Oncology30 (3): 171–80. PMID18806738.
↑Plewczyński D, Ginalski K (2009). "The interactome: predicting the protein–protein interactions in cells". Cellular & Molecular Biology Letters14 (1): 1–22. PMID18839074. doi:10.2478/s11658-008-0024-7.
↑Zhang C, Kim SH (2003). "Overview of structural genomics: from structure to function". Current Opinion in Chemical Biology7 (1): 28–32. PMID12547423. doi:10.1016/S1367-5931(02)00015-7.
↑Ritchie DW (2008). "Recent progress and future directions in protein–protein docking". Current Protein and Peptide Science9 (1): 1–15. PMID18336319. doi:10.2174/138920308783565741.
↑Zagrovic B, Snow CD, Shirts MR, Pande VS (2002). "Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing". Journal of Molecular Biology323 (5): 927–37. PMID12417204. doi:10.1016/S0022-2836(02)00997-X.
↑Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M (2006). "Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II". Journal of the American Chemical Society128 (33): 10808–18. PMID16910676. doi:10.1021/ja062082i.
↑Kauzmann W (1956). "Structural factors in protein denaturation". Journal of Cellular Physiology. Supplement47 (Suppl 1): 113–31. PMID13332017. doi:10.1002/jcp.1030470410.
↑Kalman SM, Linderstrom-Lang K, Ottesen M, Richards FM (1955). "Degradation of ribonuclease by subtilisin". Biochimica et Biophysica Acta16 (2): 297–99. PMID14363272. doi:10.1016/0006-3002(55)90224-9.
↑Muirhead H, Perutz M (1963). "Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution". Nature199 (4894): 633–38. Bibcode:1963Natur.199..633M. PMID14074546. doi:10.1038/199633a0.
↑Kendrew J, Bodo G, Dintzis H, Parrish R, Wyckoff H, Phillips D (1958). "A three-dimensional model of the myoglobin molecule obtained by X-ray analysis". Nature181 (4610): 662–66. Bibcode:1958Natur.181..662K. PMID13517261. doi:10.1038/181662a0.
↑Keskin O, Tuncbag N, Gursoy A (2008). "Characterization and prediction of protein interfaces to infer protein-protein interaction networks". Current Pharmaceutical Biotechnology9 (2): 67–76. PMID18393863. doi:10.2174/138920108783955191.