En mathématiques, un nombre de Newman-Shanks-Williams (parfois abrégé « nombre NSW[1] ») est un entier naturel de la forme :
Ces nombres furent initialement décrits par Morris Newman, Daniel Shanks et Hugh C. Williams (de) en 1981, pendant l'étude des groupes finis simples d'ordre carré[2].
Propriétés
La suite d'entiers (Sn) peut être décrite par la relation de récurrence linéaire suivante :
Les premiers termes de la suite sont 1, 1, 3, 7, 17, 41, 99, ... (suite A001333 de l'OEIS).
Ces nombres apparaissent aussi dans la fraction continue de √2.
Les cinq premiers nombres premiers NSW sont : 7, 41, 239, 9 369 319 et 63 018 038 201 (suite A088165 de l'OEIS), correspondant aux indices (nécessairement premiers) 3, 5, 7, 19 et 29 (suite A005850 de l'OEIS).
Notes et références
|
Donnés par une formule |
|
|
Appartenant à une suite |
|
Ayant une propriété remarquable |
|
Ayant une propriété dépendant de la base |
|
Propriétés mettant en jeu plusieurs nombres |
singleton |
|
n-uplet |
- jumeaux (p, p + 2)
- cousins (p, p + 4)
- sexy (p, p + 6)
- triplet (p, p + 2 ou p + 4, p + 6)
- quadruplet (p, p + 2, p + 6, p + 8)
- quintuplet (p – 4, p, p + 2, p + 6, p + 8) ou (p, p + 2, p + 6, p + 8, p + 12)
- sextuplet (p – 4, p, p + 2, p + 6, p + 8, p + 12)
|
suite |
|
|
Classement par taille |
|
Généralisations (entier quadratique) |
|
Nombre composé |
|
Nombre connexe |
|
Test de primalité |
|
Conjectures et théorèmes de théorie des nombres |
|
Constantes liées aux nombres premiers |
|
|