Sinkki on metalli ja alkuaine, jonka kemiallinen merkki on Zn (lat.zincum) ja CAS-numero 7440-66-6. Nimi on tullut saksan sanan Zink kautta mahdollisesti persian kiveä tarkoittavasta sanasta sing.
Sinkin sulamispiste on noin 420 °C ja kiehumispiste 908 °C. Sinkki on huoneenlämmössä haurasta ja kiteistä, mutta lämmitessään muuttuu taipuisaksi ja pulverimaiseksi. Sinkki esiintyy hapetusluvulla +II. Puhdas sinkki on reaktiivista, mutta metallisen sinkin pinnalle muodostuva sinkkioksidikerros ei reagoi ilman hapen tai halogeenien kanssa. Sinkillä on korkea pelkistymispotentiaali, eli se hapettuu helposti.
Sinkki on tunnettu jo 3 000 vuoden takaa, jolloin sitä käytettiin messingin tekemiseen. Sinkki kuitenkin identifioitiin vasta 1746, kun Andreas Marggraf erotti metallista sinkkiä hemimorfiitin ja hiilen seoksesta.
Nykyään sinkki on kuparin, raudan ja alumiinin jälkeen maailman neljänneksi käytetyin metalli. Sinkkiä käytetään esimerkiksi rakennusteollisuudessa, autoteollisuudessa, lääketeollisuudessa ja kuluttajatuotteiden valmistuksessa. Yksi sinkin tärkeimmistä ominaisuuksista on sen kyky suojata terästä korroosiolta.
Kiinteänä sinkki on kiiltävää ja sinertävän valkoista. Huoneenlämmössä sinkki on haurasta ja kiteistä, mutta yli 100 °C:ssa se muuttuu taipuisaksi ja muotoiltavaksi. Yli 210 °C:ssa sinkki muuttuu pulverimaiseksi ja heikoksi, mutta korkeammassa lämpötilassa siitä tulee jälleen taipuisaa. Sinkin pinnalle muodostuu ohut karbonaattikerros, joka tekee sen melko taipumattomaksi, kun se reagoi ilman hiilidioksidin ja veden kanssa. Sinkki on melko pehmeää, ja sen kovuus Mohsin asteikolla on 2,5. Sen kiderakenne on heksagonaalinen. Sinkin sulamispiste on noin 420 °C ja kiehumispiste 908 °C. Sinkki palaa sinivihreällä liekillä.[4][5][1][6][7]
Kemialliset ominaisuudet
Sinkki on metalli, jonka hapetusluku on yleensä +II. Sinkki on melko reaktiivista, mutta sen pinnalle muodostuva oksidikerros kestää hyvin hapen tai halogeenien vaikutusta. Jauheena sinkki reagoi kuumennettaessa hapen tai kloorin kanssa syttyen palamaan. Hapot, kuten suolahappo, liuottavat sinkkiä helposti vapauttaen vetyä ja typpihapon tapauksessa typen oksideja. Sinkin kemiallisista ominaisuuksista merkittävin on sen korkea pelkistyspotentiaali eli se hapettuu helposti. Tähän perustuu sen käyttö suojaamaan rautaakorroosiolta ja jalompien metallien kuten hopean pelkistämiseen.[8][9][4]
Metallinen sinkki liukenee sekä emäksiin että happoihin. Sinkin liukoisuuteen vaikuttaa pH. Ionimuotoinen sinkki voidaan saostaa lievästi emäksisessä liuoksessa sinkkihydroksidiksi (Zn(OH)2). Voimakkaasti emäksiseen liuokseen sinkki liukenee tetrahydroksosinkaattina ([Zn(OH)4]2−). Zn2+-ioni voidaan myös saostaa vesiliuoksissa sulfidi-, boraatti-, karbonaatti-, fosfaatti- ja kromaatti-ioneilla. Nämä kuitenkin liukenevat happoihin. Analyysissa sinkki voidaan saostaa ja tunnistaa heksasyanoferraatilla(III) ([Fe(CN)6]3−) ruskehtavana sinkkiheksasyanoferraatti(III)na.[10][5]
Tärkein sinkkiyhdiste on sinkkioksidi, jota valmistetaan hehkuttamalla metallista sinkkiä ilman vaikutuksessa. Sinkkioksidia käytetään mm. kumiteollisuudessa. Muita tärkeitä ovat mm. sinkkikloridi, jota käytetään metallisulatteissa.[11][12]
Sinkille on tyypillistä muodostaa myös kompleksiyhdisteitä muun muassa ammoniakin, hydroksidi- ja syanidi-ionien sekä orgaanisten yhdisteiden kanssa. Sinkki kuitenkin muodostaa lähinnä tetraedrisiä komplekseja, kuten tetra-ammiinisinkki(II)- ([Zn(NH3)4]2+), tetrasyanosinkaatti(II)- ([Zn(CN)4]2+) ja tetraklorosinkaatti(II)-ioneja ([ZnCl4]2−). Poikkeuksena on sinkin hydraatti, joka on oktaedrinen [Zn(H2O)6]2+.[13][10][5][8][9]
Sinkki muodostaa myös orgaanisia yhdisteitä. Asetaatti-ionien kanssa reagoidessa sinkistä muodostuu [Zn4O(OCOMe)6], joka on kiteistä ja emäksistä. Sinkin ja asetyyliasetonin (acac) reaktiossa syntyy [Zn(acac)2]3, jossa sinkkiatomit linkittyvät toisiinsa asetyyliasetonaatti-ionien välityksellä. Sinkki muodostaa myös organometalliyhdisteitä, jotka ovat yleensä muotoa ZnR2 ja jotka ovat lineaarisia ja poolittomia. R on tyypillisesti metyyli, etyyli tai fenyyli. Ne reagoivat helposti ilman kanssa muodostaen sinkkioksidia. Muita tyypillisiä orgaanisia sinkkiyhdisteitä ovat aryylisinkkihalogeenit (RZnX, jossa X on jokin halogeeni ja R aryyli, fenyyliryhmä).[14]
Haitallisuus
Sinkkijauhe on helposti syttyvää, ja se reagoi kiivaasti veden, happojen sekä emästen kanssa, jolloin syntyy syttyvää vetykaasua. Sinkkijauhe saattaa sisältää myös pieniä määriä arseenia, joten myrkyllisten arseenikaasujen muodostuminen on mahdollista. Sinkistä syntyvät kaasut saattavat aiheuttaa metallikuumeen. Sinkki itsessään ei ole myrkyllistä, pieninä määrinä se on jopa välttämätön hivenaine, mutta yliannostus sinkkiä voi aiheuttaa pahoinvointia. Vapaana ionina sinkki on erittäin myrkyllistä kasveille, selkärangattomille ja kaloille. Liiallinen sinkki muuttaa kuparin ja raudan imeytymistä erityisesti lihassoluissa. Sinkki reagoi vatsahappojen kanssa muodostaen sinkkikloridia, joka voi tuhota vatsaa. Krooninen altistuminen sinkille aiheuttaa anemiaa, väsymystä sekä HDL:n laskua. Sinkin yliannostusta voi hoitaa veden ja maidon avulla sekä vatsalääkkein.[15][1][16][17][18]
Historia
Sinkin yhdisteitä ja metalliseoksiakuparin kanssa tunnetaan ainakin 3 000 vuoden takaa. Erityisen käytettyjä olivat messinkiset astiat. 1200-luvulla Intiassa sinkki tunnistettiin omaksi metalliksi, kun intialaiset kuumensivat sinkkimalmia suljetussa astiassa. Sinkki sublimoituu helposti, mutta se härmistyy astian reunoille, josta se on helposti irrotettavissa. Tämä tapa levisi ensin Kiinaan ja sieltä Eurooppaan. Kiinassa Ming-dynastian aikana (1368–1644) oli käytössä sinkkisiä kolikoita. 1500-luvun alussa Paracelsus kirjoitti joistakin sinkin ominaisuuksista kuitenkaan tietämättä, mitä hänen tutkimansa metalli oli. 1700-luvulla Euroopassa aloitettiin Bristolin alueella sinkin valmistus, mistä se levisi Sisiliaan ja Belgiaan. Sinkki tunnistettiin 1746, kun saksalainen kemisti Andreas Marggraf lämmitti hemimorfiitin (sinkki- ja rautaoksidin seos) ja hiilen seosta ilman kuparia, jolloin hän sai metallista sinkkiä. Sana sinkki tulee saksan kielen sanasta zinke, zin tai zink, joiden alkuperä on persian kielen sanassa sing.[5][19][20][21]
Sulfidimineraaleista sinkki muutetaan ensin sinkkioksidiksi (ZnO). Tämän jälkeen se sekoitetaan hiilen kanssa ja kuumennetaan 1 200 °C:seen. Sinkki sublimoituukaasuksi, jolloin se kulkeutuu pois reaktioastiasta, minkä jälkeen se kerätään. Tämä voidaan myös tehdä siten, että mineraali kuumennetaan ilman kanssa, jolloin rikin oksidit saadaan poistettua seoksesta. Rikkidioksidi voidaan myöhemmin muuttaa rikkihapoksi. Tällöin syntyy sinkkisulfaattia (ZnSO4), joka erotetaan elektrolyyttisesti. Toisessa vaihtoehdossa mineraali ensin jauhetaan pieneksi, minkä jälkeen hydrofobinen ja hydrofiilinen aines erotellaan toisistaan, minkä jälkeen sinkki suodatetaan ja kuumennetaan. Tämän jälkeen se uutetaan ja jälleen suodatetaan. Saadusta liuoksesta voidaan sinkki erottaa elektrolyyttisesti. Valmistamisen ongelma on, että kaasumainen sinkki reagoi ilman hapen kanssa muodostaen sinkkioksidia. Ongelma on ratkaistu lyijyllä, joka nopeuttaa sinkin kiinteytymistä huomattavasti, jolloin sinkin hapettuminen jää minimaaliseksi. Puhtausprosentiksi voidaan saada jopa 99,99 %.[4][6][22]
Ongelmat ja ympäristövaikutukset
Sinkin tarve kasvaa koko ajan. Sinkkiä joutuu ajoittain jätevesien kautta vesistöihin, joissa se kertyy mutaan ja rantapenkkoihin. Muita sinkin lähteitä ekosysteemeihin ovat muun muassa sinkityt putket, moottoriöljy sekä hyönteismyrkyt. Sinkki lisää veden happamuutta. Sinkki myös kertyy kaloihin ja myöhemmin rikastuu ravintoketjussa. Jos sinkkiä kertyy maaperään, se rikastuu eläimissä, mikä on haitallista niiden terveydelle. Myöskään kasvit eivät kestä liikaa sinkkiä. Turvallisen sinkkipitoisuuden raja-arvoksi vedessä on määritelty 2 mg/l. Tällöin sinkki saattaa aiheuttaa veden maun huononemista. Sinkki-ioni ei ole itsessään pienissä määrissä myrkyllinen, mutta jotkin sinkin yhdisteistä, kuten sinkkisyanidi ja -arsenidi, ovat erittäin myrkyllisiä. Sinkin määrää vesistöissä on pystytty laskemaan tuntuvasti viime vuosikymmeninä. Tunnettu sinkistä saastunut joki on Rein, mutta sen sinkkimäärät on saatu laskemaan suositeltuihin arvoihin. Sinkki voidaan puhdistaa vesistöissä muun muassa aktiivihiilen, hyydyttämisen tai ioninvaihdon avulla.[24][25]
Käyttö
Sinkki on maailman neljänneksi käytetyin metalli raudan, alumiinin ja kuparin jälkeen. Yli puolet tuotetusta sinkkimetallista käytetään kuumasinkitykseen ja galvanointiin, eli sillä päällystetään terästä, esimerkiksi nauloja. Galvanoidussa (sähkösinkitys) metallissa sinkki toimii niin sanottuna uhrianodina, eli se hapettuu pinnoitetun metallin sijaan, jolloin esimerkiksi teräksen tapauksessa vältytään ruostumiselta. Sinkkiä käytetään muutenkin rakentamisessa, erityisesti katoissa ja sadevesikouruissa käytetään sinkittyä peltiä. Ilman vesi ja hiilidioksidi muodostavat sinkin pinnalle sinkkikarbonaattia, joka suojaa muuta metallia. Sinkkiä ei voida käyttää esimerkiksi ruokatölkkien päällystämiseen, sillä ruoissa olevat hapot liuottavat sitä. Sinkkiä käytetään myös painevaluissa, jolloin sulaa sinkkiä valetaan rautaiseen muottiin, johon se jähmettyy. Painevalettuja osia käytetään muun muassa autoissa. Sinkkiä käytetään myös muun muassa kolikoissa. Sinkkiä voidaan käyttää myös mm. hyönteismyrkyissä. Sinkkiä käytetään alkaliparistoissaanodina. Paristoissa sinkin kanssa käytetään yleensä mangaanidioksidia, elohopeaoksidia ja ammoniumkloridia.[19][4][5][6][26][27][25]
Sinkkiä käytetään myös useissa metalliseoksissa, kuten pronssissa, messingissä ja uushopeassa. Sinkkiä voidaan käyttää metalliseoksissa, kunhan seosten ei tarvitse olla erityisen vahvoja. Messinkiä käytetään soittimissa, koruissa ja monenlaisissa koriste-esineissä.[19][4][5][6][26]
Sinkkiä voidaan käyttää vapauttamaan vetyä epäorgaanisista hapoista (kuten suola- ja typpihaposta). Syntetiikassa sinkkiä käytetään ketonien valmistamisessa, karbonyyliyhdisteiden reaktioissa ja kytkentäreaktioissa. Sinkki toimii tällöin katalyyttinä. Sinkkikloridia voidaan käyttää dehydrauksessa ja katalyyttinä. Sinkin isotooppia 65Zn voidaan käyttää lauhdevesissä.[4][25][28][7]
Sinkin yhdisteillä on monia käyttötarkoituksia. Sinkkikloridia voidaan käyttää puun kyllästämiseen, tekstiilien värjäämiseen, liimoihin, sementtiin ja metallisulatteissa. Sinkkisulfidia käytetään televisioissa ja röntgenlaitteissa. Sitä käytettiin aiemmin myös lasten lelujen värjäyksessä, kunnes se todettiin haitalliseksi. Sinkin arseeniyhdisteitä käytetään hyönteismyrkyissä. Sinkkiyhdisteitä voidaan käyttää myös muun muassa väriaineina ja muina pigmentteinä, veden pehmennyksessä ja veden puhdistuksessa. Sinkkioksidia voidaan käyttää kumiteollisuudessa vulkanoinnissa. Sitä käytetään myös lasien vahvennuksessa, maaleissa sekä lääkkeissä.[4][11][7]
Isotoopit
Luonnossa esiintyvä sinkki koostuu neljästä pysyvästä isotoopista64Zn, 66Zn, 67Zn, 68Zn ja yhdestä erittäin pitkän puoliintumisajan isotoopista 70Zn, jonka puoliintumisaika on 5×1014 vuotta. Näistä 64Zn on yleisin 48,6 % osuudella. Sinkillä on ytimessään 30 protonia ja neutronien lukumäärä vaihtelee 27:n ja 51:n välillä.[29]
Sinkkiä tulee saada ravinnosta päivittäin, koska se ei varastoidu elimistöön.[30] Sinkki on arviolta noin kolmentuhannen proteiinin rakennusosa. Eliöt tarvitsevat sinkkiä myös esimerkiksi DNA:n ja kehitystä ja hedelmällisyyttä säätelevien entsyymien valmistukseen.[19][31][17] Sinkkiä tarvitaan esimerkiksi vastustuskyvyn ylläpidossa, haavojen paranemisessa sekä haju- ja makuaistin toiminnassa[30]. Sinkillä on keskeinen rooli myös elimistön tulehdusvasteen kontrolloinnissa.[32]
Ruokapitoisuudet
Sinkkiä on erityisen runsaasti porsaanmaksassa ja -sydämessä[33] sekä naudanlihassa. Lihan väri korreloi jossain määrin sen sinkkipitoisuuden kanssa, sillä poron- ja naudanlihassa on lähes kolme kertaa enemmän ja sianlihassa 15 prosenttia enemmän sinkkiä kuin kalan lihassa. Kalkkunan sinkkipitoisuus on kuitenkin suurempi kuin sianlihan ja broilerissa taas on 40 prosenttia vähemmän sinkkiä kuin kalassa, vaikka se on väriltään tummempaa.[34] Kananmunassa on 40 prosenttia enemmän sinkkiä kuin broilerissa. Myös maidossa on jonkin verran sinkkiä.[34]
Sinkkiä löytyy myös esimerkiksi vehnänalkioista, ruisleivästä, adukipavuista ja valkoisista pavuista[34]. Täysjyväviljojen ja palkokasvien sisältämä sinkki imeytyy kuitenkin eläinperäistä huonommin, koska ne sisältävät runsaasti sinkin imeytymistä heikentävää fytaattia[35][36][37].
Veriseerumin sinkkipitoisuuden pitäisi sijoittua välille 50–150 mikrogr./dl[39].
Suomen valtion ravitsemusneuvottelukunnan suositusten mukaan sekaruokaa syövien aikuisten tulisi saada sinkkiä päivittäin 1,1 milligrammaa ravinnosta energiana saatua megajoulea kohti, mikä tekee noin 11,5 milligrammaa keski-ikäisten keskivertoisella 2500 kilokalorin päiväkulutuksella. Raskaana olevilla on kuitenkin noin 30 prosenttia ja imettävillä naisilla lähes 60 prosenttia suurempi sinkintarve. Lapsilla ja nuorilla suositus vaihtelee iän mukaan, ja suurin tarve on kasvuikäisillä pojilla, jotka tarvitsevat 11–12 mg/vrk.[40]
Vegaanit tarvitsevat muita enemmän sinkkiä, koska eläinproteiini parantaa sinkin hyväksikäyttöä ja viljan- sekä palkokasvien fytiinihappo heikentää sitä. Vegaanien saantisuositus on sen vuoksi keskivertokalorinkulutuksella miehillä lähes 15 milligrammaa päivässä, mikä vastaa 82:ta grammaa vehnänalkioita tai 31:tä ruisleipäviipaletta.[41] Vegaanit saavat käytännössä sekasyöjiä vähemmän sinkkiä, mutta heillä on todettu olevan tästä huolimatta samanlaiset sinkin veripitoisuudet[42].
FinRavinto 2017 -tutkimuksen ruoankäyttöhaastatteluiden perusteella laskettu miesten sinkin tavanomainen saanti vaihteli noin 5–24 mg:n ja naisten noin 5–16 mg:n välillä.[43]Viljat, liha ja maito ovat suomalaisten kolme tärkeintä sinkin lähdettä.[19][31][5]
Sinkkitabletit sisältävät usein noin kolme kertaa vähimmäismäärää suuremman päiväannoksen[44][45][46]. Tämä on johtanut siihen että sinkin saanti ylittää muutamalla prosentilla aikuisväestöstä valtion ravitsemusneuvottelukunnan suositteleman suurimman hyväksyttävän päiväsaannin rajan 25 mg[47]. Yhdysvaltojen viranomaiset ovat kuitenkin katsoneet, että 40 mg/vrk olisi vielä turvallinen taso[48]. Liiallinen sinkin saanti saattaa häiritä kuparin imeytymistä.[30]
Puute
Sinkin puute on Suomessa harvinaista, mutta laihduttajat kuuluvat sinkin puutteen riskiryhmään.[49] Sinkinpuute johtuu vuonna 2007 julkaistun kiinalaistutkimuksen mukaan usein ravinnon suuresta fytaattipitoisuudesta.[50] Myös elimistön suuret kupari- ja rautapitoisuudet saattavat häiritä sinkin imeytymistä.[30]
Sinkin imeytymistä voi edistää kasviperäisten ruoka-aineiden liottamisella ja idättämisellä sekä leipätaikinan nostattamisella hiivan avulla.[37]
Sinkin puute häiritsee aivojen kehitystä etenkin lapsilla.[19][31][17] Sinkin puute saattaa aiheuttaa hiustenlähtöä ja kaljuuntumista sekä haju- tai makuaistin menetyksen.[51]
Sinkkiä tarvitaan myös esimerkiksi haavojen paranemisessa ja vastustuskyvyn ylläpidossa[30] sekä elimistön tulehdusvasteen kontrolloinnissa.[32]
Sinkki sairauksien hoidossa
Sinkin on havaittu vähentävän aivojen matala-asteista tulehdusta ja niukasti sinkkiä saavien on havaittu sairastuvan tavallista helpommin masennukseen[52].
Joistain tutkimuksista on saatu vankkaa näyttöä siitä, että 80 milligramman sinkkiasetaattitablettien imeskely lyhentää huomattavasti flunssan kestoa,[53] toisin kuin sinkkisitraattitabletit.[53] On kuitenkin olemassa myös tutkimuksia, joissa kyseinen hoito ei lyhentänyt flunssaa.
Lähteet
Gray, Theodore & Mann, Nick: Kiehtovat alkuaineet. ((The elements: A visual exploration of every known atom in the universe, 2009.) Käännös: Timo Hautala ja Heli Ruuhinen) Jyväskylä: Docendo, 2010. ISBN 978-951-0-36582-3
N. N. Greenwood & A. Earnshaw: Chemistry of the Elements. (2. painos) Oxford: Elsevier Ltd, 1997. ISBN 978-0-7506-3365-9(englanniksi)
↑Michael T. Wieser & Tyler B. Coplen: Atomic Weights of the Elements 2009 (IUPAC technical report). Pure and Applied Chemistry, 2011, 83. vsk, nro 2. IUPAC. Artikkelin verkkoversio. Viitattu 16.4.2011. (englanniksi)
↑ abcFrank E. Goodwin :Zinc Compounds, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2001 Teoksen verkkoversio Viitattu 19.06.2011
↑ abcGünter G. Graf: Zinc, Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, New York, 2002 Teoksen verkkoversio Viitattu 19.06.2011
↑ abcMuhonen H, Oksanen A, Pajunen S, Tilus P, Lumme K: Epäorgaanisen kemian perustyöt 1B: Ionien reaktiot ja kvalitatiivinen analyysi, s. 41–42, 78. Kemian laitos, Epäorgaanisen kemian laboratorio, 2009.
↑Martin R. Broadley, Philip J. White, John P. Hammond, Ivan Zelko, Alexander Lux: Zinc in plants 7.2.2007. onlinelibrary.wiley.com. Viitattu 1.7.2011. (englanniksi)
↑W. Carruthers, Iain Coldham: Modern Methods of Organic Synthesis, s. 67-70. Cambridge University Press, 2004. ISBN 9780521778305Kirja Googlen teoshaussa Viitattu 1.7.2011. (englanniksi)
↑Neriya Levran, Noah Levek, Bruria Sher, Noah Gruber, Arnon Afek, Efrat Monsonego-Ornan, Orit Pinhas-Hamiel: The Impact of a Low-Carbohydrate Diet on Micronutrient Intake and Status in Adolescents with Type 1 Diabetes. Nutrients, 15.3.2023, 15. vsk, nro 6, s. 1418. PubMed:36986149doi:10.3390/nu15061418ISSN 2072-6643Artikkelin verkkoversio.
↑Fineli ravintotietopankki. Terveyden ja hyvinvoinnin laitos. Viitattu 20.3.2020
↑Angela V. Saunders, Winston J. Craig, Surinder K. Baines: Zinc and vegetarian diets. The Medical Journal of Australia, 29.10.2013, nro 4, s. S17–S21. doi:10.5694/mja11.11493Artikkelin verkkoversio. (englanniksi)
↑https://www.nap.edu/read/10026/chapter/14/ |date=September 19, 2017 }}, pp. 442–501 in Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy Press. 2001.