Kobaltoa eta honen aleazioak korrosioarekiko oso erresistenteak dira, tenperaturak oso altuak badira ere. Aplikazio komertzial garrantsitzuenak: tenperatura altuetan erabiliko diren aleazioetan, aleazio magnetikoetan, hortzetarako eta kirurgirako aleazioetan vitalium deituak. Kobalto-60, isotopo erradiaktiboa da eta modu artifizialean ekoiztu da, ikerkuntzan, medikuntzan eta industrian oso erabilia da.
Bere izenaren jatorri alemaniarra “kobalt” da, “kobolds” hitzaren eratorria dena, eta “gnomo” da bere esanahaia.
Propietateak
Zilar koloreko kobalto metala hauskorra da, oso urtze-puntu altua dauka eta bere erresistentzia eta tenperatura altuak mantentzeko gaitasunagatik da baliogarria.
Beste metal magnetiko batzuekin agertzen da naturan, hala nola, burdina eta nikela, eta bere magnetismoa manten dezake beste edozein metal baino tenperatura altuagoetan (1100 °C), hau da, kobaltoak metalen artean Curie tenperatura altuena dauka, 1115 °C. Bestalde, ezaugarri katalitiko baliogarriak ere baditu.
Kobalto metalikoa bi forma alotropikoz osatuta dago, bata egitura hexagonala kubikoa eta bestea kubikoa aurpegietan zentratua, bien arteko trantsizio tenperatura 722 K da. Gelaxka unitateko [1]parametroak a=354,41pm (a=b=c α=β=γ=90º). Oxidazio egoera baxuak aurkezten ditu. +4 oxidazio egoera duten konposatuak ez dira oso arruntak, +2 eta +3 oxidazio egoera oso arruntak dira, badira baita +1 oxidazio egoerarekin eratutako konposatuak. Konfigurazio elektronikoa [Ar]3d74s2 da. Bere bataz besteko erradio 135 pm da, bere Bohr-en erradio atomikoa 152 pm, eta bere erradio kobalentea 126 pm.
Agerpena
Burdina eta nikelaren antzekoa da, bai modu askean zein konbinatuan. Naturan erraz aurkitu daiteke, eta lurrazaleko arroka igneoen %0,001-a suposatzen du. Meteoritoetan, izarretan, itsasoan, lurrean, ur gezean, landareetan eta animalietan aurkitu daiteke. Komertziorako garrantsitzuak diren kobaltoaren mineralak, artseniuroak, oxidoak eta sulfuroak dira.
Airean eta ingurugiroan (ura, zorua, harroka, landare, animali) dagoen elementua da.
Meatzaritzan ikatzaren konbustioa dela eta, gizakiak kobaltoaren zati txikiak atmosferara zabaltzen ditu.
Kobaltoaren isotopo erradiaktiboak ez daude modu naturalean ingurugiroan, baina energia nuklearretako operazioetan eta istripu nuklearren bidez askatuak dira. Desintegraziorako erdi-bizitza laburra dute, ez dira oso arriskutsuak.
Uretan kobaltoa baldintza azidoetan disolbatzen da soilik, baina kobalto gehiena sedimentuetan edota lurrean dago.
Margoak, bernizeak eta tinteak kobaltoaren konposatuak erabiliz egin daitezke zenbait kolore lortzeko.
Aleazioetara gehitzen da, superaleazioak lortzeko. Tenperatura egonkorra dutenak eta erreakzio motoreetan zein gas turbinetan erabiliak dira. Inplanteetan ere, hala nola, belaunetako protesietan.
Erregai likidoak eta polimeroak, kobaltozko katalizatzaileen erabilpenarekin lortzen dira.
Kobalto-59 erabilita, lehergailu nuklearra eraiki daiteke. Leherketa txikia izango zen arren, hondakin erradiaktiboek beteko zuten azalera denbora batez kutsatuta geldituko da.
Kobalto-57 medikuntzan erabiltzen da, organismo batean B12 bitaminaren kantitatea neurtzeko.
Bitxiak eta mahai-tresnak galbanizatzeko, oxidazioaren aurrean erresistentzia emateko ere erabili daiteke kobaltoa.
Laborategian, lehen silizezko gelan kobalto (II) kloruro adierazle moduan erabiltzen zen.
Kobaltoaren kimika
Kobaltoa oxigenoan berotzean Co3O4 -a sortzen da eta 900 °C-tan oxigenoa galtzen du CoO sortuz.
Metalak F2-arekin erreakzionatzen du, CoF3 emanez, eta berdina gertatzen da beste halogenoekin ere.
Bestalde, boro, karbono, fosforo, sulfuro eta artsenikoekin erreakziona dezake gatz desberdinak lortuz. Nagusiki kobaltoaren hiru oxido daude: CoO kobalto grisa, Co2O3 kobalto beltza (konposatua tenperatura baxuan eta aire soberakinarekin berotzean sortzen da), eta Co3O4oxido misto egonkorra.
Beraz, kobaltoaren oxidazio egoera egonkorrena (II) izan arren, (III) oxidazio egoera ere konplexua formatuz egonkorra izan daiteke. Beraz, amoniakoarekin konplexua eratzean egonkortzen da (III) oxidazio egoera, [Co(NH3)6]3+(aq) espeziea sortuz. Kobalto (III) espezieak uretan, berriz, ezegonkorrak dira, eta erreduzitu egiten dira berez.
Erredukzio potentzialak hauek izango lirateke, egonkortasuna baldintzaturik:
[Co(H2O)6]3+(aq) + e- → [Co(H2O)6]2+(aq) E0 = 1,92 V
[Co(NH3)6]3+(aq) + e- → [Co(NH3)6]2+(aq) E0 = 0,11 V
Historia
K.a. 2000. urteko zeramiketan tindatzaile moduan aurkitu da, oxidatuta urdina baita. Beirarekin galdatuz, urdin kolorea agertzen zen. Mendeetan zehar uste izan zen kolore horren erantzulea bismutoa zela.
XVI. mendean, Georgius Agricola, mineralogistak, arroka ezberdin bat deskribatu zuen, “cobaltum”a. Arroka hau meatzari alemanen artean ezaguna zen. Burdin eta nikelezko meatzetako minerala zen, prozesatzerakoan metal erabilgarriak eta inolako erabilpenik ez zuen hauts zuri bat lortzen zen, zeina birrinduta toxikoa eta azalarekin kontaktuan jartzean garratza bihurtzen zen. Meatzariek uste zuten, meatzetako “kobolds” izaki magikoek arroka hauek eraldatzen zituztela, beraz, kobolds-en arroka izena jarri zioten, hau da, “cobaltum”[4].
XVIII. mendean, Georg Brandt, lehen mailako mineralogista cobaltum-a ikertzen hasi zen. Honen ezaugarri bereziak determinatzeko asmoz, tenperatura altuetan hainbat prozesu burutu zituen bere osagaiak banatzeko.
Bere lanari esker gaur badakigu, “cobaltum”-a, gaur egun “cobaltita”, artseniko, sufre eta kobaltoz osatua dagoela. Arroka honen toxizitatearen erantzulea artsenikoa bera zen. Ez ziren metal erabilgarriak lortzen, beste arrokekin erabiltzen zen prozesu berdina jarraitzean, produktua kobalto(II)-ren oxidoa zelako, CoO, baina tenperatura altuetan berotu zuenean, metal berri bat aurkitu zuen.
Zenbait artikulu idatzi zituen, baina esanguratsuena, 1748. urtekoa, “Cobalti nova species examinata et descripta[5]” izan zen.
XIX. mendean, metal berria erauzi eta modu industrialean koloratzaile moduan erabili zen. Horretarako gehien erabili zen konposatua, kobalto(II) aluminio oxidoa, CoAl2O4 zen.